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Abstract
Among alternative tillage practices, conservation tillage (CT) is a prominent greenhouse gas (GHG) mitigation strategy 
advocated in wheat cultivation, largely because of its low energy consumption and minimum soil disturbance during cultural 
operations. This paper examines the agricultural production and GHG emission trade-off of CT vis-à-vis traditional tillage 
(TT) on wheat farms of Bangladesh. Using a directional distance function approach, the maximum reduction in GHG emis-
sions was searched for within all available tillage technology options, while  increasing wheat production as much as possible. 
The underlying institutional, technical, and other socio-economic factors determining the efficient use of CT were analyzed 
using a fractional regression model. The average meta-efficiency score for permanent bed planting (PBP) and strip tillage 
(ST) was  0.89, while that  achieved using power tiller operated seeders (PTOS) is 0.87.  This indicates that with the given 
input sets, there is potential to reduce GHG emissions by about 11% for ST and PTOS; that potential is 13% for farmers 
using PTOS. The largest share of TT farmers cultivate wheat at lower meta-efficiency levels (0.65–0.70) compared to that 
observed with farmers practicing CT (0.75–0.80). Fractional regression model estimates indicate that an optimal, timely 
dose of fertilizers  with a balanced dose of nutrients is required to reduce GHG emissions. To develop climate smart sus-
tainable intensification strategies in wheat cultivation, it is important to educate farmers on efficient input management and 
CT together. Agricultural development programs should focus on addressing heterogeneities in nutrient management  in 
addition to tillage options within CT.
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Introduction

Agriculture is a major source of global environmental problems 
including climate change, biodiversity loss, soil degradation, 
and loss of water quality and quantity (McNunn et al., 2020). 
In the case of climate change, agricultural land uses are widely 
acknowledged to contribute ca. 19–20% of greenhouse gas 
(GHG) emissions globally from anthropogenic activities 
(Jantke et al., 2020). When considering the entire production 
and supply chain of agriculture and food production, these 
emissions would reach up to 29% of global GHG emissions 
(Vermeulen et al., 2012).  GHG emissions from agriculture are 
influenced enormously by farmer decisions on the intensity 
and frequency of material inputs and cultivation practices such 
as tillage (Martin-Gorriz et al., 2020).

Though concern over the negative environmental 
externalities of mounting atmospheric GHG concentrations has 
escalated in the past decade, sustainable and environmentally 
desirable agricultural development remains an elusive goal, 
particularly in developing countries (Antle and Diagana, 2003). 
In countries that have large-scale food security problems, the 
policy environment often favors the use of input-intensive 
technologies, and  can be  biased against climate-smart-
sustainable intensification (SI) alternatives. Although SI 
implies methods that  increase agricultural yields without 
adverse environmental impact and without the conversion 
of additional non-agricultural land to cultivation (Pretty and 
Bharucha, 2014),  in practice, SI alternatives may suffer from 
trade-offs between economic performance and environmental 
sustainability (Kanter et al., 2018), with important implications 
for shaping agricultural policies in developing countries. 
Achieving both environmental and economic efficiency is 
important because improving the former can be a cost-efficient 
way of reducing undesirable environmental impact, and SI 
policies that aim to improve environmental efficiency may 
also be easier to implement than drastic measures that aim to 
restrict the level of economic activity to meet conservation 
goals (Picazo-Tadeo et al., 2011). This paper explores the trade-
off and synergies between the production and environmental 
impact of conservation tillage (CT), and its scope as a potential 
alternative to traditional tillage (TT) or conventional practices for 
environment-friendly, yet productive, agriculture, using wheat 
farming systems in Bangladesh as a case study. We compared 
the environmental efficiency (EE) of TT against the three main 
CT practices adopted by wheat farmers in Bangladesh, namely 
(1) permanent bed planting (PBP), (2) crop establishment with 
a power tiller operated seeder (PTOS), and (3) strip tillage (ST).

Conservation tillage is an umbrella term for a range 
of residue management and no till or reduced tillage 
practices (Horwath and Kuzyakov, 2018). In addition, 
numerous experiments have confirmed the advantages 
of the split application of fertilizers  to  synchronize the 

supply of nutrients with crop demand and limit losses to the 
environment. An optimal, timely dose of balanced nutrients  
can aid crop production, enhance  economic performance, 
and  minimize environmental externalities. At the same 
time, the fertilizer response to irrigation can affect  
production–emission trade-offs.   In addition, CT practices 
have been reported to reduce GHG emissions from primary 
sources of emissions (land tillage and sowing) and also 
indirectly  through decreased use of fossil fuels in field 
preparation.  Such reductions are achieved by replacing 
inversion plowing, while combining seeding and tillage into 
a single operation that saves fossil fuel use. As CT limits soil 
disturbance,  the long-term adoption of CT can restore soil 
structure and enhance activity of soil biota that are critical 
to sequestering carbon in the soil (Lal 2015).   In this study, 
however, we adopt a broad definition of CT to a reduction in 
frequency of tillage passes and in conjunction with the usage 
of direct seeding equipment (Gathala et al., 2016).

The available literature on the environmental dimensions 
of CT has three key shortcomings. First, there is a dearth of 
evidence on the actual efficiencies of the cropping system 
process under on-farm conditions as practiced by farmers 
themselves, rather than on research stations. Despite 
this, CT is frequently promoted as one among the best 
potential mitigation strategies – at times with debatable 
consequences (Powlson et al., 2014) – because it aims at 
reducing environmental impact by combining reduced tillage 
operations (to minimize soil disturbance) with the efficient 
use of input resources (Feng et al., 2018). Reducing  tillage 
operation frequency, for instance, the use of no-tillage 
including zero-tillage coupled with controlled traffic systems 
have potential to reduce GHG emissions and enhance C 
sequestration in arable land, even in situations where high 
nitrogen rates are used (Gasso et al., 2014; Antille et al., 
2015). As such, empirical evidence on the environmental 
impact of CT is limited mostly to the agronomic dimensions, 
such as soil carbon sequestration (Powlson et al., 2014), 
nutrient loss and water quality (Munodawafa and Zhou, 
2008), and assessments of the consequence of these practices 
on biodiversity (Palm et al., 2014). Second, CT is widely 
promoted as a climate smart farming practice, and the IPCC 
Fourth Assessment Report underscores its  potential to 
mitigate GHG emissions (Thierfelder et al., 2017) although 
the potential for conservation agriculture to improve soil 
carbon storage at increasing soil depth has been questioned 
(Powlson et al., 2014). Finally, though studies explore the 
environmental impact of CT versus conventional/traditional 
tillage (TT) (Haddaway et al., 2017), there are still relatively 
few examples that comprehensively explore the trade-offs or 
synergies between production, profitability, and environmental 
goals across different CT approaches. Consequently, this 
article addresses the above-discussed research gap by 
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estimating the environmental efficiency (EE) of wheat farmers 
using different types of CT practices,  by testing the following 
two hypotheses: 

1.	 Environmentally, CT is a more  appropriate crop produc-
tion approach than conventional tillage.

2.	 Agricultural production–emission trade-offs will vary 
with technology options, and are influenced by socio-
economic and institutional factors affecting farmers.

To test the first hypothesis, we carried out an environ-
mentally sensitive efficiency analysis. Using the directional 
distance function (DDF) approach, the maximum contrac-
tion of environmentally detrimental output is searched for 
within the technology options available at the observed level 
of inputs, while expanding the desired output as much as 
possible. The second hypothesis, which is concerned spe-
cifically with the environmental impact of CT technology 
on households, is tested through a meta-frontier approach, 
along with a  fractional regression model (FRM).

As a case study, this paper based on observed wheat cul-
tivation data from adopters of CT (i.e., those farmers who 
have adopted PBP, PTOS, and ST) and practitioners of TT 
in the eastern Indo-Gangetic plains of Bangladesh.

The remainder of the paper is structured as follows. The first 
part of the methodology (“Methodology”) discusses the theoreti-
cal and econometric foundation of environmental efficiency  and 
factors determining it. The second part details the study area, 
sampling, and data collection. “Results and discussion” discusses 
the results, while the “Conclusion” concludes the paper by pro-
viding key insights and messages distilled from the study.

Methodology

Agricultural production model with undesirable 
output

Agriculture involves the joint production of desirable (mar-
keted or good) output and undesirable (non-marketed or 
bad) outputs; for example, crop cultivation typically makes 
use of external inputs, such as fertilizers or insecticides, 
that can result in undesirable environmental externalities, 
including GHG emissions. Thus, in this production setting, 
the production process involves—apart from the desirable 
output of wheat grain—the undesirable externality of GHG 
emissions and consequental  climate change. Thus, the 
joint production of desirable and undesirable outputs can 
be expressed in terms of feasible output sets P(x), x ∈ ℜM

+
 

(Ball et al., 2001):

(1)P(x) =
[(
yg, yb

)
|
(
x, yg, yb

)
∈ T

]

In Eqs. (1) and (2), yg ∈ ℜ1
+
 denote wheat grain (the desir-

able output), yb ∈ ℜ1
+
 indicates GHG emissions (undesirable 

output), and x ∈ ℜM
+

 represents external inputs. Earlier assess-
ments treated environmental externalities (to air, water, and 
ground) and side effects (such as pesticide poisoning) as inputs 
in the production activity. Estimating the efficiency of technol-
ogy adoption involves the application of either one of two gen-
eral approaches including parametric stochastic frontier analysis 
(SFA) and/or nonparametric data envelopment analysis (DEA) 
(Manjunatha et al., 2016). Recent studies (e.g., Dong et al., 
2018; Le et al., 2019) employed linear programming–based 
traditional data envelopment analysis (DEA) to model GHG 
emissions from agricultural production, by treating undesirable 
outputs (GHG emission) as inputs in the DEA. The approach of 
considering undesirable outputs as inputs is inconsistent with the 
principles of production ecology as they modeled the technol-
ogy studied with an unbounded output set, thus failing to satisfy 
the standard axioms of production theory (Färe and Grosskopf, 
2004). We overcome this limitation of traditional DEA through 
a novel directional distance function (DDF) approach, which 
models undesirable emissions as outputs, by satisfying the fol-
lowing six axioms of agricultural production:

1.	 Inactivity: It is possible to produce neither desirable nor 
undesirable output for any given input vector.

2.	 Compactness: Finite inputs can only produce finite out-
puts.

3.	  Inputs are freely disposable. However, in the setting of 
agricultural production, this axiom implies  that it is pos-
sible to incorporate multiple inputs as well as a single 
input in examining the  correlation of input variables 
(Macpherson et al., 2010).

4.	 Null-jointness: In the given technology of production, it 
is impossible to produce wheat grain without producing 
GHGs.

5.	 Strongly disposable desirable (good) output: The farmer 
may freely dispose of good output.

6.	 Weakly disposable undesirable (bad) outputs: Reducing 
grain yield could potentially reduce GHGs; that is, the 
private cost of reducing environmental emission is non-
zero and positive.

Directional distance function approach

The desired direction of the environmental–economic DDF 
for crop production is the maximum expansion of wheat  
production in the dg direction with the largest feasible pro-
portional contraction in inputs and GHGs in the −dx and 
−db directions, respectively. While considering resource use 
optimization and the environmental externality reduction 
that could be accrued with CT, we define environmentally 

(2)where,T =
[(
x, yg, yb

)
|x can produce

(
yg, yb

)]
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sensitive agricultural production in terms of the DDF 
approach, wherein the maximum contraction of environmen-
tally detrimental output is searched for within the technol-
ogy options available at the observed level of inputs while 
expanding wheat production as much as possible (Fig. 1).

Mathematically, the directional distance function can be 
defined as

where d = (−dx, dg,−db) . Under the properties of null-
jointness, jointly weak disposability of desirable and 
undesirable outputs, and strong disposability of desirable 
output, the value �g measures the productive technical 
inefficiency; �b is the environmental efficiency (EE); and 
�x is the input use efficiency, and Eq. (3) seeks the maxi-
mum attainable expansion of desirable outputs in the dg 
direction and the largest feasible contraction of undesir-
able outputs and inputs in db and dx directions (Färe and 
Grosskopf, 2004).

We illustrate the directional distance function using 
Fig. 1, by assuming that the production process consists 
of one desirable and one undesirable output and that the 
input vector is held at constant level. As stated in Eq. (3), 
the objective of the environmental DDF is to expand the 
production in the desired direction ( dg ), while contracting 
the undesirable output to the minimum level possible ( db 
direction). Let the production feasibility set under weak 
disposability assumption in Fig. 1 is denoted by the points 
“RTUVW.” This production feasibility set represents the 
global/meta-production frontier (PG), which encompasses 
all group frontiers (an example of group frontier in Fig. 1 
is PTT). That is, all the group benchmark tillage technolo-
gies (strip tillage 

(
PST

)
 , permanent bed planting 

(
PPBP

)
 , 

power tiller operated seeder 
(
PPTOS

)
 , and traditional tillage 

(3)
��⃗DT

(
x, yg, yb;d

)
= sup

[
𝛿 ∶

(
yg + 𝛿gdg, yb − 𝛿bdb

)
∈ P(x − 𝛿xdx)

]

(
PTT

)
 ) are enveloped by a global benchmark technology 

( PG ) forming a single production feasible set from the all 
tillage technologies. For the detailed information of tillage 
technologies studied here, please refer to supplementary 
material SM Table 1. 

Consider farm A, which is under-producing yg and over-
producing yb. The objective of the DDF model is to move A 
to fw ( yb − �b�db, yg + �g�dg ) by assuming weak disposability 
of GHG emission. To operationalize the DDF models, we 
adopt the activity analysis in the following formulation for 
decision making unit (farm) i = 1,...., N producing one desir-
able (good) output and one undesirable (bad) output using 
k = 1,…, K inputs with the assumption of jointly weakly 
disposable outputs (Färe and Grosskopf, 2004; Macpherson 
et al., 2010):

where z is the intensity variable. The second constraint 
explains that the undersireable output is weakly disposa-
ble. The expansion factor � measures the distance from the 
observed performance of the farm to the production frontier 
at the boundary of the feasible production set in the desired 
direction:

(4)PG = PST
⋃

PPBP
⋃

PPTOS
⋃

PTT

(5)��⃗�
(
xi∗ , y

i∗

g
, yi

∗

b
;d
)
= max𝛿i∗

subjectto ∶

∑N

i=1
ziy

i
g
≥ yi

∗

g
+ �i

∗

g
dg

∑N

i=1
ziy

i
b
= yi

∗

b
− �i

∗

b
db∑N

i=1
zixik ≤ xi∗kk − �i

∗k
x
dx = 1,… .K

zi ≥ 0i = 1,… ..,N

(6)d = {Max
(
yg
)
,Min

(
yb
)
,Min(dx)}

Fig. 1   Directional distance 
function and global Malmquist-
Lueneberge productivity index
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Alternatively, if �i is equal to zero, the farm i lies on the 
production possibility frontier. Farms lying on the frontier 
have efficiency scores of 1.0, and they are 100% efficient 
(Saravia-Matus et al., 2021). Here, � does not require any 
functional form specification, but is sensitive to measure-
ment units and the magnitude of the variable. This sen-
sitivity causes serious problems, as inconsistency is very 
common across agri-environmental variables (Macpherson 
et al., 2010). To manage this sensitivity, we transformed the 
variables to:

Under this transformation, � is similar to an elasticity 
measure (Picazo-Tadeo et al., 2011), and is equivalent to the 
maximum increase (decrease) in desirable outputs (inputs 
and undesirable outputs) as a percentage of the maximum 
observation for each variable in the dataset (Macpherson 
et al., 2010). In our efficiency analysis, we convert the 
Shephard distance function to the Farrell efficiency score, 
in which an efficiency score of unity indicates a technically 
efficient farm, and an efficiency score of less than unity indi-
cates a technically inefficient farm.

Technology gap—meta technology ratio

Let ��⃗Dk

(
x, yg, yb;d

)
 be the output-oriented distance function 

for the group frontier representing the group benchmark 
technology 

(
Pk
)
 , which is defined as

and ��⃗DG

(
x, yg, yb;d

)
 be that of meta-frontier representing 

global technology ( PG) . The technology gap ratio (MTR) can 
be then defined as

This can be illustrated using Fig. 1 for farm A, cultivating 
wheat using TT, where

Let the distance Af1 in Fig. 1 represent the relative posi-
tion of the farm with reference to the group frontier, and Afw 
is the distance from global frontier. Thus,

(7)y∗
g
=

yg

ymax
g

;

(8)y∗
b
=

yb

ymax
b

;

(9)x∗
k
=

xk

xmax
k

∀k

(10)Pk =
{
PST,PPBP;PPTOS,PTT

}

(11)MTRk
(
x, yg, yb;d

)
= ��⃗DG

(
x, yg, yb;d

)
− ��⃗Dk

(
x, yg, yb;d

)

(12)
MTRTT

(
x, yg, yb;d

)
= ��⃗DG

(
x, yg, yb;d

)
− ��⃗DTT

(
x, yg, yb;d

)

Determinants of environmental‑economic 
efficiency: fractional regression model estimation

Despite the problems of linearity and truncation assump-
tions, the conventional Tobit models so far employed in 
the second stage regression of efficiency scores to ana-
lyze the factors determining (in)efficiency assume that 
the same environmental variables affect both efficient and 
inefficient farms alike. However, when the probability of 
observing efficient farms is relatively large — as in our 
case, when the sample size is low — one may suspect that 
the sources of farm efficiency may differ from those of 
farm inefficiency (Ramalho et al., 2010). Hence, a two-part 
model that avoids problems associated with using linear 
and Tobit models in the DDF framework could be the best 
way to explain both efficiency and inefficiency effects in 
our study.

We employ the FRM adapted to the DEA framework by 
Ramalho et al. (2010). The first part of the FRM comprises 
a standard binary choice model that governs the probabil-
ity of observing an efficient wheat farm.

The conditional probability of observing an efficient 
wheat farm is specified as

where m is a binary variable that can take 1 and 0 values 
for efficient and inefficient wheat farms respectively. In our 
study, model specification of F

(
x�1p

)
 is identified using 

tests proposed by Ramalho et al. (2010). Equation (16) 
could be estimated by the maximum likelihood method 
using the whole sample of farms. The second component 
of FRM is a fractional part estimated using part of the 
sample consisting inefficient farms ( 𝜔 = (1 − 𝛿b) < 1 ), and 
governs the magnitude of the DDF efficiency scores on the 
interval [0, 1], as

where � denotes the efficiency score with 𝛿 > 0 . M(.). 
Depending on the tests performed for E(�|x) in the FRM’s 
first part (where �2p is the vector of exogenous factor coef-
ficients), the model was specified for both the binary and 
fractional part of analysis. The RESET (Regression Equation 

(13)��⃗DG

(
x, yg, yb;d

)
− ��⃗DTT

(
x, yg, yb;d

)
= Afw − Af1

(14)MTRTT
(
x, yg, yb;d

)
= Afw − Af1

(15)Pr(m = 1|x ) = E(m|x )

(16)E(m|x ) = F
(
x𝛽1p

)
,m =

{
1for𝛿 = 0

0for0 < 𝛿 < 1.

(17)E(�|x ,� ∈ ]0, 1[) = M
(
x�2p

)
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Specification Error Test), the GGOFF (Generalized good-
ness-of-functional form) test, and p-tests were used to test the 
correct specification of the conditional expectation E(�|x) of 
the dependent variable in the FRM. For estimation purpose, 
these models have been implemented in R (R 3.2.1).

Data and study area

The present study is based on primary data collected from 
wheat farming households (N = 140) and custom service 
(tillage) providers (N = 35) in three wheat producing dis-
tricts in the eastern Indo-Gangetic Plains of Bangladesh 
(namely, Dinajpur, Rajshahi, and Nilphamari) (Fig. 1) dur-
ing the summer 2012 (April–June), following the previ-
ous season in which wheat was produced in the winter. 
The farm household data were collected through personal 
interviews, using structured questionnaires, whereas focus 
group discussions were also conducted for collecting data 
pertaining to tillage machinery operations. The selection 
of households followed a  random sampling procedure 
among villages where CT is practiced by farmers along-
side traditional tillage (Table 1) (Fig. 2).

In this study, under the broad umbrella of CT, we consider 
three major tillage options available for wheat: permanent 
bed planting (PBP), power tiller-operated seeder (PTOS), 
and strip tillage (ST). This disaggregation of CT technol-
ogy captures the potentially differential impacts of tillage on 
yield and efficiency, which was largely unrecognized in pre-
vious studies that used more confined technology definitions 
(Cf. Erenstein (2009). Therefore, wheat-growing households 
are first grouped into CT adopters and non-adopters for the 
2011–2012 crop season and, within the adopters’ group, 
farmers are sorted by the type of CT. The final sample for 
this study comprises 105 CT adopters (35 each belonging to 
PBP, ST, and PTOS) and 35 non-adopters.

The summary statistics in Table 1 provide insight into the 
input and outputs used in the DDF model as well as into the 
explanatory variables used in the second stage FRM. The 
variables used in the estimations can be grouped into input, 
output, farm household, and management variables. On 
average, CT adopters are better educated than non-adopters 
and are better exposed to training programs on conservation 
agriculture. The GHG emissions (i.e. carbon dioxide (CO2), 
nitrous oxide (N2O), methane (CH4)) from crop production 
can originate from primary, secondary, and tertiary sources. 
According to Lal (2004), primary sources of GHG emissions 
are due to either mobile operations (e.g., tillage, sowing, 
harvesting, and transport), or stationary operations (e.g., 
water pumping, energy for post-harvest processing, etc.). 
Secondary sources comprise manufacturing, packaging, and 
storing fertilizers and pesticides. Tertiary sources include 
acquisition of raw materials and fabrication of equipment 

and farm buildings. In the case of wheat in Bangladesh, the 
main sources of energy-based GHG emissions are either pri-
mary (e.g., tillage and pumping for irrigation) or secondary 
(e.g. fertilizers). It is beyond the scope of this study to con-
sider activities leading to tertiary emissions from building 
farm and field infrastructure, field irrigation channels, etc. In 
addition, accounting for emissions that originate from soil 
biological processes  was also not possible under this study. 
Therefore, we capture two types of emission sources (pri-
mary and secondary) as undesirable outputs in the DDF 
model, specifically by imputing the quantity of fossil fuels 
(for on-farm operations including tillage and irrigation), 
fertilizers, and agro-chemicals consumed at the plot level. 
For detailed explanation on our emission calculations, see 
Appendix A1.

Since CT adopters are segregated from non-adopters 
(TT) based on the type of tillage operations involved in 
the main wheat plot, these input variables are measured 
at the level of the main wheat plot, to increase data accu-
racy. The inputs in the DDF are the plot level measures 
of variables: area of the main wheat plot, quantity of 
nitrogen, phosphorus, potash (NPK) fertilizers, fuel and 
seed, volume of irrigation water, and amount of labor. 
The groups differ in terms of chemical fertilizer, fuel, and 
labor. The use of NPK fertilizers by CT adopters (averag-
ing 106:57:80 kg ha−1) and that of non-adopters (Aver-
aging 119:64:93 kg ha−1) differs from the recommended 
rate of NPK fertilizer in this region (100:90:45 kg ha−1), 
largely with respect to phosphorus and potash fertilizers.

However, in the studied farms, the use of plant pro-
tection chemicals (0.61 kg ha−1) is about half the dose 
(1.25 kg ha−1) recommended by the Bangladesh Agricul-
tural Research Institute. The use of inputs such as fuel, 
labor, irrigation, seed, phosphorous, and potash fertilizers 
was found to be significantly higher among non-adopters 
than CT adopters. Though the farmers studied  differ in 
their consumption of potash and phosphorus, they are 
similar in their use of nitrogen as well as the pesticide 
that contribute  as secondary sources environmental exter-
nalities. In order to achieve nutrient use efficiency and to 
mitigate GHG emissions from fertilizer application, the 
4R principles of nutrient management can be beneficial 
(Bindraban et al., 2015). The 4R’s of fertilizer nutrient 
management stand for right source, right rate, right time, 
and right place.

Already, several agronomic on-station experiments 
have confirmed the advantages of the split application of 
fertilizers: improvement in plant uptake and reduction in 
the negative environmental externalities as pollution. An 
optimal, timely dose of fertilizers is required, along with 
a balanced dose of nutrients, such that crop production is 
economically profitable, and its environmental externali-
ties minimal. At the same time, the fertilizer response to 
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irrigation can affect the production–emission trade-off. To 
capture this, we included—along with other conventional 
exogenous factors—three fertilizer-related tillage-specific 
management variables: dummies for (1) application of 
NPK fertilizers in splits, (2) application of N-fertilizer 
before irrigation, and (3) the delay in N fertilizer appli-
cation following the  maximum tillering stage of wheat.  
Table 1 also shows that compared to adopters (30%), non-
adopters (66%) tended to delay their N fertilizer applica-
tion after the maximum tillering stage. Best management 
practices for wheat recommend timely and split applica-
tion of fertilizers during critical periods of growth, only 

42% of CT adopters applied fertilizers in splits; this indi-
cates that many are still learning how to adopt the CT 
technology effectively.

Results and discussion

Environmentally sensitive production efficiency 
of conservation tillage

Table 2 presents the EE estimates under both constant (CRS) 
and variable return to scale conditions (VRS) by employing 

Table 1   Summary statistics

a Measured at the farmers' primary wheat field level, standard errors in parenthesis; * , ** , and ***  mean differences between CT and TT farms 
are significant at the 10%, 5%, and 1% levels, respectively
b The kilogram CO2 equivalents (kg CO2eq) computed  using standard conversion factors/coefficients given in Appendix Table A1
c Fuel use measured from both tillage and irrigation operations

Variables All samples (N = 140) CT (N = 105) TT (N = 35)
Mean (SE) Mean (SE) Mean (SE)

Farm household variables
 Cultivable land owned (ha) 0.63 (0.05) 0.67 (0.06) 0.50 (0.09)
 Educational level of the farmer (years) 6.95 (0.31) 7.50** (0.37) 5.29 (0.45)
 Age of the farmer (years) 46.20 (1.08) 45.75 (1.19) 47.54 (2.46)
 Training on conservation agriculture (number of training events attended) 1.66 (0.14) 2.01** (0.16) 0.60 (0.13)
 Experience in conservation tillage (years) 2.51 (0.21) 3.35*** (0.28) 0.00 (0.00)
 Involvement in farming (1 = full, 2 = partial, and 3 = no involvement) 1.45 (0.05) 1.43 (0.06) 1.51 (0.10)
 Access to credit (Yes = 1, otherwise = 0) 0.34 (0.04) 0.29 (0.04) 0.49* (0.09)
 Remoteness (km) 0.26 (0.03) 0.24 (0.04) 0.30 (0.05)
 Distance to the nearest extension service office (km) 13.72 (1.47) 9.25*** (1.49) 27.11 (2.86)
 Farm household size (numbers) 5.01 (0.20) 4.93 (0.24) 5.26 (0.42)
 Off-farm income (%) 25.29 (2.15) 26.43 (2.50) 21.86 (4.22)

Output variablesa

 Wheat yield (t ha−1) 3.93 (0.05) 4.01** (0.07) 3.68 (0.05)
 Greenhouse gas emission (kg CO2eq ha−1)b 415.49 (8.82) 393.80* (10.35) 480.56 (11.12)

Input variablesa

 Seed (kg ha−1) 141.12 (3.03) 128.36** (2.65) 179.39 (5.35)
 Nitrogen fertilizers applied (kg ha−1) 109.39 (2.80) 106.31 (3.48) 118.62 (3.79)
 Phosphorus fertilizer applied (kg ha−1) 58.81 (1.57) 56.94* (1.83) 64.41 (1.57)
 Potash fertilizer applied (kg ha−1) 83.28 (2.44) 80.11** (2.99) 92.78 (3.45)
 Fuel use (L ha−1)c 43.52 (1.38) 38.00** (1.28) 60.06 (2.30)
 Pesticide use (kg ha−1) 0.61 (0.10) 0.67 (0.13) 0.42 (0.08)
 Labor (h ha−1) 674.31 (36.90) 584.93*** (34.86) 942.44 (91.08)
 Irrigation (m3 ha−1) 1479.52 (70.29) 1386.22* (73.91) 1759.41 (166.12)
 Wheat main plot (ha) 0.15 (0.01) 0.15 (0.02) 0.17 (0.02)

Management related variables
 Advice received from input dealer (numbers) 0.99 (0.08) 1.13** (0.09) 0.57 (0.12)
 Application of NPK fertilizers in splits (Yes = 1, otherwise = 0) 0.42 (0.04) 0.42 (0.05) 0.43 (0.08)
 Application of N- fertilizer before irrigation (Yes = 1, otherwise = 0) 0.42 (0.04) 0.45 (0.05) 0.34 (0.08)
 Delay in N-fertilizer application at tillering stage (Yes = 1, otherwise = 0) 0.39 (0.04) 0.66** (0.08) 0.30 (0.04)
 Awareness on soil and water conservation (Yes = 1, otherwise = 0) 0.44 (0.04) 0.55*** (0.05) 0.11 (0.05)



	 Environmental Science and Pollution Research

1 3

the DDF model. With different tillage options used in the 
different study regions, the environmental efficiency meas-
ures based on the VRS assumption would sub-divide the 
data into sets of farmers  achieving similar returns to scale. 
This may potentially lead to the domination of those farms 

considered efficient within their peer groups for specific till-
age technology types across all attributes within other scaled 
peer groups as well (Ferraro, 2004). Hence, the estimates 
and efficiency effects in this paper are focused largely under 
the CRS framework.

Table 2   Directional distance function (DDF) and technology gap ratio  (MTR) of wheat farmers with respect to tillage-specific frontiers and 
meta-frontier estimates

 “***” = null of equality of distributional densities to EE (Li et al., 2009) of TT is rejected at the 0.1% level. CT and TT stand for conservation 
and traditional tillage. PBP, PTOS, ST indicate permanent bed planting, power tiller operated seeding, and strip tillage

Efficiency DDF-CRS DDF-VRS

PBP PTOS ST TT PBP PTOS ST TT

Tillage-specific EE 0.90 (0.12) 0.92 (0.09) 0.95 (0.08) 0.99 (0.02) 0.95 (0.09) 0.96 (0.07) 0.99 (0.04) 0.99 (0.01)
Meta-frontier EE 0.89*** (0.12) 0.87*** (0.11) 0.89*** (0.12) 0.72 (0.06) 0.92*** (0.10) 0.90*** (0.11) 0.93*** (0.11) 0.74 (0.07)
MTR 0.99 (0.03) 0.94 (0.06) 0.94 (0.08) 0.72 (0.05) 0.97 (0.06) 0.93 (0.08) 0.94 (0.10) 0.74 (0.06)

Fig. 2   Map of Bangladesh 
showing study districts
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Tillage‑specific efficiency

To get first-hand information on the environmentally sensi-
tive production efficiency of farms within a tillage technol-
ogy set, the tillage-specific efficiency scores of farmers are 
estimated using their tillage groupings during  benchmark-
ing. Table 2 reports the average EE scores relative to the 
individual tillage-specific DDF frontier and meta-frontier 
technologies, alongside MTR scores of CT adopters (includ-
ing for PBP, PTOS, and ST) and non-adopters (TT). The 
average tillage-specific efficiency scores in the DDF are 
estimated at 0.90, 0.92, 0.99, and 0.99 for farms practic-
ing PBP, PTOS, ST, and TT, respectively. The efficiency 
ranges for PBP, PTOS, ST, and TT are 0.65–1.00, 0.76–1.00, 
0.74–1.00, and 0.92–1.00, respectively. The ranges of tillage-
specific DDF efficiency scores display a wider spread for CT 
adopters than for non-adopters. While the efficiency ranges 
of ST and PTOS are broader than that of non-adopters, an 
even wider range of efficiency (0.65–1.00) is observed for 
PBP farms. This indicates considerable operational hetero-
geneity within the tillage option, and could be due to the 
differential adoption behavior of farmers (according to Ara-
vindakshan et al. (2015), a small portion of farmers tend 
to reinvent CT by combining TT practices). On the other 
hand, the efficiency estimates of TT have a smaller range 
(0.92–1.00), which suggests that conventional farms are 
more or less homogenous in production practices. However, 
further interpretation based on the tillage-specific efficiency 
score is quite misleading, as it envelops only one tillage tech-
nology at a time, without considering other technologies 
available to farmers.

Meta‑frontier efficiency and technology gap

Table 2 presents the results of the meta-frontier environmen-
tal efficiency (meta- frontier EE) estimates. It shows that 
30% of sample farms cultivate on the DDF meta-frontier. 
The average meta-frontier EE scores are estimated at 0.89, 
0.89, 0.87, and 0.72 for farms practicing PBP, ST, PTOS, 
and TT, respectively. The corresponding meta-frontier EEs 
will be 89%, 89%, 87%, and 72% for PBP, ST, PTOS, and 
TT farmers, respectively. This indicates that with the given 
input sets observed in our surveys, there is a potential to 
reduce GHG emission by about 11% in the case of both PBP 
and ST; that potential is conversely 13% for PTOS farmers. 
The largest share of TT farmers cultivate wheat at consid-
erably lower meta-efficiency levels (0.65–0.70) compared 
to that of CT farmerss (0.75–0.80). Many of the CT farm-
ers showed high efficiency (0.85–1.0), and all meta-frontier 
farms were CT adopters. The mean EE achieved by CT 
farmers is 88%, which is substantially higher than those fol-
lowing traditional tillage techniques (72%). This difference 
is clearly shown by  bean density plots  displayed in Fig. 3 

A and B. One of the possible reasons for this behavior is 
path dependency  emerging from farmers' familiarity from 
'green revolution' type technology approaches, in which 
more fertilizer-responsive semi-dwarf varieties produce 
more grain yield per unit of additional fertilizer. However, 
over the years, a yield plateau has reached in many coun-
tries, with only incremental gains being made  (Lin and 
Huybers, 2012). Conversely, the continued increased use 
of fertilizers without appropriate cultivars that can capture 
nutrients and convert them to economic yield is associated 
with reduced nitrogen use efficiency and GHG emissions. 
Options to improve efficiencies, however, do appear to exist 
within the group of farmers studied. Our estimates showed 
a positive signal, as the traditional farms could drastically 
reduce GHG-emitting inputs (N, P, pesticides, and fossil 
fuels) without compromising existing yield levels.

The observed spread of meta-efficiency scores showed that 
some CT adopter efficiency scores were about 50%. These 
farmers follow CT recommendations  only partially. For 
example, in the strict sense, CT expressed as conservation 
agriculture recommends  the maintenance of crop residues 
on the soil surface as a  mulch and minimizing tillage. Com-
bined with a reduction in tractor fuel use, this can  generate 
positive environmental externalities through carbon sequestra-
tion and offsetting CO2 emissions. However, typically, partial 
adopters  may not fully achieve above-mentioned emission 
mitigation outcomes that can be accrued with CT. Farmers 
using PBPs appear to occupy the largest share of farms at the 
frontier (43%), and the corresponding shares of PTOS and ST 
are 37% and 40%, respectively. The observed TT distributions 
appear to exhibit considerably more density in the smaller 
efficiency range than that of PBP, PTOS, and ST (Fig. 3C). 
The kernel density graph shows that farmers practicing CT 
can attain frontier efficiency with more ease (e.g., without 
having to make drastically significant changes in management 
practices and the inputs used) than TT. Among CT adopters, 
PBP farms perform slightly better—their densities cluster at 
higher efficiency levels, and the PBP curve advances at pro-
gressively higher rates of convergence to the EE frontier than 
other types of CT farms in the study area.

Nevertheless, on average, all CT technologies cluster 
around higher efficiency levels, illustrating that all the tech-
niques appear to be environmentally superior to conventional 
TT. This was also confirmed by our equivalency testing of 
efficiency distributions using the adapted-Li test (Li et al., 
2009), which reported a significant difference (P < 0.001) 
between CT and TT.

The technology gap ratio or meta-technology ratio (MTR) 
measures how close  CT and TT farmers, respectively, 
are to the meta-technology frontier. The outcome for CT 
shows that on average, the MTR for CT is associated with 
a low technology gap with reference to the meta-technol-
ogy frontier. The gap, however, is higher for TT. Thus, in 
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the case of wheat production in our study areas, CT appears 
to be more promising—both technologically and environ-
mentally. The MTR for ST and PTOS is 0.94, which means 
that ST and PBP farmers can produce about 6% more of 
the desired outputs that could be generated  using the same 
inputs, though this requires that they employ the technol-
ogy represented by the meta-frontier even after reducing 6% 
of GHG emissions. For PBP, the MTR is 0.99, which is very 
close to the meta-frontier, and is a fair representation of the 
meta-technology; i.e., the possibility for further improve-
ment for farmers who have adopted this technology is very 
minimal. Conversely, the low MTR of TT, 0.72, represents 
a very inefficient technology; by shifting from TT to the 
meta-frontier technology (say, PBP), farms can reduce 28% 
of the observed rate of GHG emissions, potentially with an 
improvement  of up to 28% in grain yield (Fig. 2).

Thirty percent of the farmers on the environmental effi-
ciency frontier produced relatively low GHG emissions 
compared to farmers making use of TT (ca. 481 kg CO2eq 
ha−1). The corresponding GHG emissions under the vari-
ous tillage options studied are given in Table 3.  Although 
GHG emissions are expected to be relatively lower for 
farmers using CT, the amount of GHGs reduced by each 
different tillage and crop establishment practice provide a 
clearer picture of the trade-off between GHG emission and 
yield. PBP frontier farmers emit the lowest GHGs, but with 
lower yields than those achieved by farmers using PTOS. 
One of the reasons for the lower emissions rate observed for 
PBP may be attributed to the permanent or semi-permanent 
nature of some of the raised beds; upon which planting 
is carried out in each season such that no inversion tillage is 
required once the beds are established. Bed planting is also 

Fig. 3   Density plots showing 
environmental efficiencies of 
various tillage options. CRS 
and VRS indicate constant 
and variable returns to scale, 
respectively. CT and TT stand 
for conservation and traditional 
tillage. PBP, PTOS, ST indicate 
permanent bed planting, power 
tiller operated seeding, and strip 
tillage
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typically associated with increased efficiency in irrigation. 
The absence of significant amounts of tillage once the beds 
are established reduces consumption of fuel, as does reduced 
irrigation water use that lowers pumping and hence fuel use. 
Of the three tillage options compared within CT technolo-
gies, an unexpected result that was observed is the higher 
emission from ST along with the lowest yield (Table 3). This 
appears to be resulted from our observations that for many of 
the ST farmers, input use is variable and also relatively low. 
As a result, farmers practicing ST were not on par with PBP 
or PTOS farmers in case of both emissions reduction and 
yield. Our results therefore indicate that whilst CT is associ-
ated with improved efficiencies, the environmental impacts 
across CT options are not necessarily similar.

Recent estimates of GHG emissions from wheat farms 
vary widely. In Researcher-led and managed, on-station trials 
carried out in Bangladesh, Rahman et al. (2021) reported an 
average emission of 2,028 kg CO2eq ha−1 from conventional 
tillage. By contrast, in China, GHGs produced from wheat 
were almost two times higher (5,455 kg CO2eq ha−1) for 
wheat (Zhang et  al., 2017). Such differences in range, 
however, can result from slight differences in coefficients 
used to calculate GHGs, as well as from methodological 
issues associated with measurement, and the difference 
in input rates applied to crops in fundamentally different 
climatic conditions that result in variation in the cropping 
season's length.  Rahman et  al. (2021)   also  found that 
soil organic carbon accumulation for CT practices were 
almost ten times (0.97–1.3 t ha−1) than those achieved 
under traditional tillage (0.11 t ha−1). . Unlike the studies 
mentioned above, which account for cumulative GHG 
emissions from all sources, our study estimated GHG 
emissions solely from primary and secondary sources of 
emission in South Asia's eastern Indo-Gangetic Plains of 
Bangladesh. Currently, approximately 0.82 million hectares 
is under conventional wheat cultivation in Bangladesh 
(BBS (Bangladesh Bureau of Statistics), 2020). At the 
same time, our estimates show that it is possible to reduce 
GHG emission by approximately 97 kg CO2eq ha−1  through 
the  use of CT technologies in  Bangladesh.  Although 

this is a relatively small amount compared to emissions 
that may result from other crops – particularly from rice 
– any reduction in GHGs that is associated with increased 
economic and agronomic productivity is arguably desirable 
from both a farmer and policy maker standpoint. 

Factors determining the environmental efficiency 
of wheat farms

To obtain  robust estimates in the FRM, the correct specifi-
cation of the conditional expectation E(�|x) of the depend-
ent variable is validated using the specification tests pro-
posed by Ramalho et al. (2010) (Table 4). Based on the 
specification tests, we chose complementary log–log (Clog-
log) approaches for binary part and log–log specification 
for fractional part of our analyses (Table 5). The role of 
education in EE was  found to be significant and positive 
for both adopters and non-adopters of CT technological 
options. The estimates of average partial effects show that 
efficiency improves by almost 3% when farmers have at least 
10 years of formal education. At the same time, from the 
binary Clog-log FRM results, the probability of observing 
an efficient farmer in the study areas is also 2% higher for 
household farm heads with 10 years of education when com-
pared to a less educated and/or illiterate household. How-
ever, within inefficient farms, the influence of education on 
efficiency gain is minimal. The importance of education in 
EE has already been demonstrated  in the literature (Picazo-
Tadeo et al., 2011). Educated farmers can often causally 
associate the positive influence of technology on environ-
mental outcomes. In the study areas, on average, older farm 
household heads had only seven years of education on aver-
age, but younger farmers had at least 12 at the time of sur-
veying. Thus, encouraging the younger generation to take 
up farming could potentially increase the EE of wheat farms 
in the study areas by approximately 1.2%, although efforts 
to retain youth in agriculture are beset with multiple chal-
lenges, most notably the appeal of working in other sectors 
that may be perceived as more 'advanced' or 'modern', and/
or more remunerative. As reported before in Table 1, access 

Table 3   Meta-frontier farms, 
grain yield, and greenhouse 
gas (GHG) emissions. CRS 
and VRS indicate constant 
and variable returns to scale, 
respectively. CT and TT stand 
for conservation and traditional 
tillage. PBP, PTOS, ST indicate 
bed planting, power tiller 
operated seeding, and strip 
tillage

a No of farms in parenthesis

Tillage Meta-frontier farms Non-frontier farms

(%)a GHG emissions of 
(Kg CO2eq ha−1)

Grain yield 
(t ha−1)

(%)a GHG emissions 
(Kg CO2eq ha−1)

Grain 
yield (t 
ha−1)

PBP 43 (15) 316 4.44 57 (20) 437 3.87
PTOS 37 (13) 364 4.48 63 (22) 391 3.94
ST 40 (14) 396 4.06 60 (21) 398 3.61
CT 40 (42) 359 4.33 60 (63) 409 3.80
TT 0 – – 100 (35) 481 3.68
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to agricultural credit to assist in input provision does not 
delimit the adoption decision of CT wheat, while it appears 
to positively affect EE. The significant coefficient estimate 
(0.11) for this variable implies that formal or informal credit 
constraints have a large negative impact on efficiency. This 
also points to the benefits that may be accrued from improve-
ment in access to financing to support the purchase of   CT 
drills. On the other hand, access to other components of 
the  crop management practices that may be required for 
well CT  including improved seeds, balanced fertilizers, 
and methods for weed control,  will also likely be necessary 
to improve the efficiency of inefficient adopters. Farmers 
exposed to training in conservation agriculture also appear 
to be more likely to adopt environmentally sound practices, 
as our results indicated a positive influence of training on 
households’ capacity to cultivate wheat more efficiently.

The area of cultivable land owned by wheat farmers 
influences neither the likelihood of observing an efficient 
farm nor the efficiency of inefficient farms (Table 5). Gould 
et al. (1989) observed, on the other hand, that farm size is 
negatively associated with the adoption of soil conservation 
practices in tillage operations. We were constrained 
from testing the influence of the scale of operation on the 
efficiency of CT by the highly fragmented landholdings, 
very small farm size, and limited heterogeneity in acreage of 
cultivation. Other household variables—including farmers' 
ages, household sizes, and off-farm income—presented no 
statistically significant coefficients, whereas the remoteness 
of the village was found to be associated with observing 
an inefficient farm. The negative impact of remoteness on 
efficiency could be associated with transportation difficulties 
that may be encountered in moving  CT machinery  or 
inputs to the farm, as well as with possible challenges in 

accessing advice from extension workers. However, in 
the sample villages, the average distance from the nearest 
extension office to farms on which CT had been at least 
partially adopted farms was only 14 km, and most of these 
farms have good road access. The importance of extension, 
credit, and asphalted roads have been shown to increase 
both cropping intensity (Aravindakshan et al., 2020) and 
Bangladeshi farmers’ preference for sustainable crop 
management techniques (Aravindakshan et al., 2021a; b. On 
the other hand, on more remote farms, a higher share of the 
households lack access to extension advice, and farmer-to-
farmer information flows are more prevalent. Furthermore, 
private agro-input dealers are sought out by farmers more 
often than formal  extension services. This is a common 
observation in Bangladesh, representative of a risk that may 
decrease efficiency and that introduces a moral hazard, as 
private agrcultural  input dealers may be  biased towards 
intensive input use in order to encourage sales. Efforts are 
therefore needed to educate agricultural input dealers on the 
long-term business risks associated with inappropriate 
marketing or the provision of mis-information to farmers in 
ways that may increase their profitability in the short-term, 
but which undermines farmers' efficiency and may encourage 
distrust among their farmer-clients in the long-run, in 
addition to contributing to negative environmental outcomes.  

Although a range of fertilizer types was used by the 
farmers in our study, the quantity of  nitrogen applied between 
adopters and non-adopters of CT practices was more or less 
similar (Table 1). Therefore, the variation in the residual 
effect of nitrogen on inefficiency and GHG emissions across 
efficient and inefficient farms is likely have arisen less from 
fertilizer management but more from fertilizer application 
timing. The application of nitrogen in splits before irrigation 

Table 4   Specification 
test probability values for two-
part fractional regression model 
(FRM) based on DDF

**  and * denote test statistics which are significant at 5% or 10%, respectively
na indicates not applicable, nc non-convergence of the model due to out of bound estimates in “R”

Binary component Fractional component

Logit Probit Loglog Cloglog Logit Probit Loglog Cloglog

RESET (Regression 
Equation Specifica-
tion Error) test

0.360 0.370 nc 0.377 0.151 0.059* 0.297 0.012*

GGOFF (Generalized 
Goodness-of-func-
tional Form) - I test

0.341 0.414 nc 0.451 0.073* 0.063* 0.204 0.012*

GGOFF (Generalized 
Goodness-of-func-
tional Form) - II test

0.452 0.341 nc 0.451 0.124 0.046* 0.204 0.012*

P-test
H0/H1:FRM-Logit na 0.989 nc 0.278 na 0.248 0.134 0.173
H0/H1:FRM-Probit 0.155 na nc 0.175 0.105 na 0.261 0.056*
H0/H1:FRM-Loglog nc na na nc 0.069* 0.058* na 0.266
H0/H1:FRM-Cloglog 0.830 0.999 nc na 0.015* 0.012* 0.113 na
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is found to affect efficiency positively (Table  5). The 
efficiency impact of the time of application of nitrogen was 
however even more pronounced, As the date of nitrogen 
application is progressively  delayed, our observations 
suggested that efficiency drops  drastically. In the rice–wheat 
systems of South Asia, the general recommendation is to 
apply nitrogen fertilizer to wheat in at least two split doses 
at planting,  and at crown root initiation) stages, although an 
additional split at maximum tillering or heading may also 
be suggested. Apart from split application of fertilizer, the 
right type of fertilizer that is applied both at the right rate 
(quantity) and right time, and right place of the plant (e.g. 
active root zone) is necessary to increase nutrient uptake and 
reduce the risk of environmental losses and  emissions from 
fertilizer application (Bindraban et al., 2015).

Even where farmers have adopted at least three splits for 
nitrogen application, some may  broadcast nitrogen quite 
late into the season (Singh et al., 2013). Our results indicate 
that households (66% of them in the sample) applying nitrogen 
at maximum tillering stage are more environmentally efficient 
than those who apply after this stage. A recent agronomic study 
by Singh et al. (2013) among wheat farmers in South Asia also 
reported that the impact of an additional dose of nitrogen at 
maximum tillering stage can significantly improve yield. The 
intensity of production-emission trade-offs in wheat therefore 
not only depends on the quantum of inputs (e.g., the rate at 
which fertilizers are applied) but also on the schedulingof 

input  application. Considering other variables, although 
a  positive impact of farmers' awareness on soil and water 
conservation techniques on environmental efficiency is generally 
expected, the variable presented no statistical significance in the 
fractional regression model. This is despite our observations that 
CT adopters had more awareness on soil and water conservation 
than TT farmers (Table  1). CT adopters nonetheless 
were found to have saved approximately 373.0 m3 ha−1 of 
irrigation water, on average, and almost consumed 27% less than 
their TT counterparts (Table 1). Although we did not observe 
statistical differences, this suggests that further  increased 
efficiency under CT could be encouraged by extension services 
that capitalize on CT adopters' tendency towards improved soil 
and water management practices (Table 5).

CT adopters saved approximately 37% of the fuel used 
by tractors and irrigation pumps compared to non-adopters. 
This is consistent with the estimates by Aravindakshan et al. 
(2015), who reported > 30% fuel savings for CT wheat in 
Bangladesh. Considering the number of tillage passes and fuel 
use efficiency for land preparation and crop establishment, CT 
was associated with a reduction in tillage frequency (< 2 passes 
for CT, with bed planting being the only practice that may 
require more than one tillage event, compared to 3–5 passes 
for TT techniques). Our data suggest that the corresponding 
improvements in environmental efficiency can approach 
approximately 23%, 21%, and 23% for PBP, PTOS, and ST 
adopters relative to traditional, multi-pass tillage practices.

Table 5   Determinants of environmental efficiency in wheat farming as observed under the fractional regression model (FRM)

Dependent variable: meta-frontier environmental 
efficiency scores (CRS) by directional distance 
function estimation

Two part FRM: model estimates Two part FRM: average partial effects

Independent variables Binary Cloglog (n = 140) Fractional Loglog (n = 98) Binary Cloglog + fractional Loglog

Model intercept  − 4.676***(1.355) 1.138***(0.222)
Cultivable land owned  − 0.275(0.414)  − 0.040(0.059)  − 0.042(0.060)
Remoteness  − 2.752**(0.014)  − 0.037(0.084)  − 0.400***(0.152)
Distance to the nearest extension office  − 0.022*(0.013)  − 0.001(0.003)  − 0.003*(0.002)
Education of the farmer 0.211***(0.053) 0.045***(0.017) 0.033***(0.006)
Age of the farmer 0.006(0.016) 0.000(0.003) 0.001(0.002)
Training on conservation tillage 0.468**(0.216) 0.133(0.090) 0.074**(0.030)
Access to credit 0.782**(0.390)  − 0.078(0.085) 0.109**(0.054)
Involvement in farming 0.829**(0.407)  − 0.021(0.070) 0.119**(0.057)
Household size 0.028(0.113)  − 0.006(0.013) 0.004(0.016)
Off − farm income  − 0.004(0.009) 0.001(0.002)  − 0.001(0.001)
Advice from input dealer (numbers)  − 0.590(0.388)  − 0.128(0.122)  − 0.092*(0.055)
Experience in conservation tillage 0.120(0.079) 0.001(0.021) 0.018(0.011)
Nitrogen fertilizer application before irrigation 0.757**(0.362) 0.030(0.096) 0.111**(0.50)
NPK fertilizers application in splits 0.622*(0.373) 0.127(0.095) 0.090*(0.048)
Occurrence of Nitrogen fertilizer application 

delay
 − 0.011(0.460)  − 0.343***(0.104)  − 0.020(0.062)

Awareness on soil and water conservation 0.294(0.413) 0.006(0.090) 0.043(0.060)
R2: 0.352 R2:0.238
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Conclusions

The significance of climate change mitigation strategies in 
cereal production in South Asia's major rice–wheat produc-
ing regions points to the importance of research that rigor-
ously evaluates different crop management practicesinclud-
ing comparison and contrasts between alternative tillage 
and crop establishment systems. This paper investigated 
the environmental efficiency of various tillage production 
systems on wheat farms in three regions within Bangla-
desh by incorporating the GHG emissions in the DDF 
model. We also explored the underlying factors affecting 
the environmental efficiency using fractional regression 
modeling. These techniques provide a range of insights that 
are important and would otherwise be challenging to observe 
under formal agronomic experimentation.

Firstly, optimizing environmental performance requires 
farm-specific strategies, including responses to policies 
that encourage the appropriate use of CT practices. Such 
farm policies require addressing two types of heterogeneity, 
including environmental-economic efficiencies of the pro-
duction process within different CT tillage configurations, 
and also within farms and farmers. The environmental effi-
ciency of conservation tillage in our study was found to 
be 88%, and was significantly greater than that observed with 
farmers practicing conventional tillage (72%). Secondly, our 
study showed that the impact of heterogeneities in tillage 
technologies in CT does not significantly influence the envi-
ronmental–economic efficiency of the production process. 
Farm policies may fail to address the differential impact of 
tillage that arises from within and between farm and farmer 
heterogeneities. Thirdly, nutrient management was found to 
have particularly important ramifications for environmen-
tal efficiency improvements. Efforts are required to aid farm-
ers to make better decisions on fertilizer application and 
reduce nutrient losses (Rodriguez, 2020).  Focused exten-
sion and awareness raising programs could help to improve 
farmers' nutrient management practices, specifically the 
timing of N fertilizer splitting. Thirdly, the level of farmers' 
education plays a clear role in efficiency and is reflected in 
our model outcomes. Adopting PBP, ST, and PTOS leads to 
comparatively lower GHG emissions, and  savings in fuel  
use. The ways in which improved efficiency can be obtained 
with reduced use of fuel may in particular render these prac-
tices of interest to resource-constrained, smallholder farm-
ers, but as our study shows, they may still require access to 
finance to aid in the acquisition of CT machinery services 
and some inputs. These results are particularly important 
because around 60% of the farms in our sample were small 
and marginal farms, or were managed by landless farmers 
facing severe resource constraints. Despite this, our effi-
ciency estimates indicate that due to over-use of inputs and 

other resources, TT farmers have around 30% greater nega-
tive environmental impacts in the form of GHG emissions 
than CT farmers. Thus, an appropriate strategy would be 
to optimize resource use without compromising yield, and 
to  improve farmers' net benefits by reducing production 
costs.

Since we relied on GHG emissions that were computed 
from coefficients for primary and secondary sources of input 
management, we were not able to account for emissions from 
soil, nor were we able to consider soil carbon sequestration. 
Agronomic experiments could therefore be used to further 
assess and potentially validate our findings in the different 
districts of Bangladesh  under which studies were under-
taken.  Finally, in our efficiency model, social and institu-
tional constraints to  wheat production were not explicitly 
examined. However, instead of directly introducing these 
constraints in the DDF model, we tested important key con-
straints in the second stage FRM.

 Environmental externalities may not always be consid-
ered and internalized in agricultural production. A way to 
cope with this market failure could be to internalize the 
provision of further positive environmental outcomes by 
compensating farmers for practices that sustain ecosys-
tem services and that reduce pollution. In addition, our 
study highlights the ways in which farmers  and the envi-
ronment could benefit from improvements in input man-
agement under both TT and CT options. Considering the 
comparatively high environmental outcomes associated 
with CT and its reduced cost of cultivation, mechanisms 
should be explored to increase farmers' ability to access CT 
machinery services – particularly for marginal and resource-
poor farmers – on an affordable cost for tillage and crop 
establishment services.
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