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A B S T R A C T

Coastal systems are facing natural and human-driven change coupled with a rising population. With increasing
shifts in socioecological conditions during the past several decades, it is important to understand how socio-
ecological drivers at different hierarchical levels: -micro, -meso, and -macro affect coastal farming systems,
which play a crucial role in the livelihoods of coastal dwellers. Mixed rice-livestock-aquaculture farming in
Southern Bangladesh exemplifies the rapid change occurring in many of the world's coastal farming systems in
response to these drivers. We used panel data observations from the above study area and modeled trajectories of
farm typologies, and the impact of multi-level socioecological drivers by a novel approach. Our approach in-
tegrates: (1) a well-articulated conceptual frame of change observed using (2) a temporal view of the potential
drivers, change process and farm type outcomes, with the twenty years panel data of 502 households that is
analyzed by means of (3) multivariate statistics in conjunction with panel data models that operationalize the
conceptual frame. Our approach allows (a) estimating dynamic effects over time that typically cannot be esti-
mated in a cross-sectional data set, (b) distinguishing between time-invariant fixed and time dependent random
effects of multi-level socioecological drivers, and (c) controlling for omitted variables to a certain extent.
Considering farming systems both within and outside of polder embankment systems intended to protect against
oceanic water intrusion, we found a gradual shift from heterogeneous, rice-livestock farm types to more
homogenous farms with less livestock and more off-farm activities. Micro-level factors including farm plot
fragmentation, farmers' experience in cropping, machinery, salinity and soil fertility were influencing changes in
farming systems. Meso-level factors including markets, road infrastructure, labor availability, access to extension
and land tenure also affect the trajectory of farming systems change. Among macro-level drivers, increasing
population density positively and significantly influenced cropping intensity among farms outside polder sys-
tems. Within polders, a positive but non-significant trend was observed for the influence of population density on
cropping intensity. Our data also indicate negative and significant influence of cyclonic storms on cropping
intensity over time in both areas. Our results underscore the importance of accounting for multiple levels of
socioecological drivers of change when developing appropriate policy options for sustainable development in
South Asia's coastal farming systems.
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1. Introduction

Alongside a range of ecosystem services and economic benefits
(Martinez et al., 2007), coastal systems provide multiple opportunities
for diverse farm enterprises that integrate crops, livestock and aqua-
culture. Rural farmers in tropical coastal deltas are however highly
vulnerable to global environmental change (Krupnik et al., 2015;
Ishtiaque et al., 2017). More than 400 million people in South Asia who
live in coastal areas are experiencing significant changes in rural
economies, population density, agricultural practices, and climate that
affect their livelihoods (UNISDR-UNDP, 2012). Farmers in coastal zones
are disproportionately vulnerable to flooding, coastal erosion, soil and
water salinity, and have high sensitivity to climate change and en-
vironmental shocks (Ali and El-Magd, 2016; Krupnik et al., 2015).
Poised at the interface of multiple socioecological drivers, including
biophysical and socioeconomic factors of both natural and anthro-
pogenic origin, the coastal farming systems are undergoing rapid
change. With increasing shifts in agroecological conditions during the
past several decades, it is important to understand how socioecological
drivers at different hierarchical levels: -micro (e.g., household), -meso
(e.g., institutions), -macro (e.g., population) affect coastal farming
systems, which play a crucial role in the livelihoods of coastal dwellers.

Coastal farming systems comprise of population of individual farms
organized by their crop, livestock and aquacultural components, and
that have similar resource bases and livelihood patterns for which si-
milar development interventions may be appropriate (Dixon et al.,
2001). Understanding past and present agricultural diversity, dynamics,
and trajectories of change is crucial to inform policies aimed at meeting
Sustainable Development Goals (Valbuena et al., 2015; Domingues
et al., 2018). Only a limited number of studies have explored how
coastal farming systems have responded and adapted to socioecological
drivers.

Farm typologies and characterization of farming systems have been
widely used to understand systems complexity and agricultural devel-
opment trajectories by simplifying and organizing farms into separate
but relatively homogenous groups internally (Iraizoz et al., 2007;
Tittonell et al., 2010; Alvarez et al., 2018). Trajectories of farming
systems can be studied in different ways, for example through inductive
(Pelling et al., 2008) or deductive approaches (Valbuena et al., 2008;
Tittonell et al., 2010). The former are defined by the actors (for e.g.
farmers or extension agents) themselves while the latter are drawn from
theory or conceptual frameworks developed by researchers (Overmars
and Verburg, 2007; Sierra et al., 2017). Deductive approaches have
been used to study pathways and trajectories of change in socio-
ecological systems (Valbuena et al., 2015; Groot et al., 2016), though
most recent (Sierra et al., 2017; Alvarez et al., 2018; Lopez-Ridaura
et al., 2018; Jelsma et al., 2019) and widely cited (cf. Valbuena et al.,
2008; Righi et al., 2011; Tittonell et al., 2010; Daloğlu et al., 2014;
Cortez-Arriola et al., 2015; Kuivanen et al., 2016) studies use single
year cross- sectional data or aggregate country/regional data. While
cross-sectional data cannot control for personal fixed effects (e.g. level
of education), aggregate data can underestimate the influence of in-
dividual farm-level change. This reduces the accuracy and applicability
of insights derived from trajectory studies. Typological analysis of
cross-sectional data collected from different farms is only plausible
when farm type change and dynamics are independent realizations of
the same evolutionary process across the farming system. However,
constructed cross-sectional typologies represent only a possible occur-
rence order of a small set of properties or traits at a particular point of
time when the data was collected. They cannot reveal the dynamic
process of farming system change. Useful insights can conversely be
gained using long-term panel data.

Hierarchical clustering on Principal components (from principal
component analysis (PCA)) is the most common statistical method used
to analyze development trajectories of farm types (Valbuena et al.,
2008; Tittonell et al., 2010; Cortez-Arriola et al., 2015; Kuivanen et al.,

2016). But linking farming systems' development trajectories to a
handful of principal component (PC) axes may be misleading—what
appears like the signal of an interesting biophysical or socioeconomic
property may simply be an artifact stemming from how PCA is com-
puted. Falconnier et al. (2015) and Valbuena et al. (2015) built long-
itudinal farm typologies for analysis of PC axes and generated clusters
for different time periods. But they did not attempt any statistical ex-
tension using panel data models. By focusing analyses exclusively on
the PC axes, as is commonly done in trajectory studies, researchers are,
in effect, taking a biased sample of a multivariate distribution
(Mitteroecker et al., 2004), while also ignoring stochasticity that can
cause some dimensions to diverge more rapidly, while others exhibit
less divergence across time periods (Uyeda et al., 2015).

Unlike cross-sectional analyses, most panel data tends to be ana-
lyzed using parametric models involving Generalized Linear Mixed
Models or using marginal methods including Generalized Estimating
Equations. When considering trajectory studies, these classical ap-
proaches could however also be biased because variables in panel data
are typically sparse and highly dimensional (Di et al., 2014). Integrating
multivariate statistics with panel regression may therefore help to re-
duce the high dimensionality of longitudinal data (Yao et al., 2005).

Apart from statistical issues, knowledge gaps regarding the histor-
ical influences determining changes in farming systems have also led to
inefficiencies in agricultural policy development (Adamson et al.,
2018). The idea that multiple levels of contextual influence affect
complex systems through interdependent interactions is an ecological
view that has a long tradition since Bronfenbrenner's socioecological
systems theory published in 1989. A set of factors function at multiple
hierarchical levels: -micro (e.g., household), -meso (e.g., institutions),
−macro (e.g., population) has been emphasized in systems analysis
(Berkes and Folke, 1998; Hettig et al., 2016), though quantification of
the effects of these factors on trajectories is rare. For instance, despite
researchers recognizing the role of meso- level factors that condition
changes in infrastructure and market and institutional systems (Hazell
and Wood, 2008; Anderies et al., 2016), longitudinal evidence on
farming systems change remains largely lacking in South Asia, as are
studies that consider and integrate meso- and micro-level factors. These
factors, which for example may include farmers' level of agricultural
experience, changes in crops, irrigation and farm machinery, tenure
and land fragmentation (Piotrowski et al., 2013; Paul and wa Gĩthĩnji,
2018), could shed new insight on how and why farming systems
change, with important implications for development policies and en-
vironmental adaptation priorities (Adamson et al., 2018).

This paper introduces a new systems analysis approach to model
trajectories of farm typologies, systems dynamics and socioecological
drivers using the south-central coast of Bangladesh as a study area. This
new approach is characterized by integrating a well-articulated theo-
retical frame of change observed using a temporal view of change
processes and outcomes. We used twenty years panel data from 502
households and analyzed those utilizing multivariate statistics in con-
junction with panel data models that operationalize our theoretical
framework. Our approach estimates the dynamic change effects over
time that cannot typically be estimated utilizing cross-sectional data
set. The approach also distinguishes between time-invariant fixed and
time-independent random effects of multi- level socioecological drivers,
while also controlling for omitted variables.

Bangladesh is the world's most densely populated deltaic country
with low per-capita farmland and rural development challenges (Turner
and Ali, 1996; World Bank, 2015). About 40 million people in Ban-
gladesh remain severely food insecure. Another 11 million suffer from
acute hunger (WFP, 2016), the majority of whom inhabit coastal areas.
More than 40% of productive land is projected to be lost in the southern
region of Bangladesh for a 0.65 meter sea-level rise (World Bank,
2013). In Bangladesh's south-central coastal zone, tidal water flooding
during the monsoon “Kharif” season (June–August) is common, though
transplanted ‘aman’ rice (Oryza sativa) is widely grown during this
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period. Without large-scale irrigation development, farmers however
experience water scarcity during the cool, dry winter “Rabi” season
(November to April). Soil and water salinity as well as cyclonic storms
pose further challenges in the Kharif –Rabi seasons. Farmers tend to
fallow their land or grow low risk, low-input ‘opportunity’ crops in-
cluding broadcast, unfertilized legumes predominantly mungbean
(Vigna radiata) and lathyrus (Lathyrus sativus) during the Rabi season.
Development approaches that increase farm productivity by conserving
natural resources, increasing resource use efficiency and ecosystem
services while improving social equity, i.e. sustainable intensification
(SI) (Godfray et al., 2010), have been proposed to guide policy in
Bangladesh's coastal farming systems (MOA-FAO, 2013; Krupnik et al.,
2017). A component of SI involves increasing cropping intensity, i.e.
the number of crops grown per year on the same land, thereby raising
yield per year per unit of farmland, while also minimizing land ex-
pansion and consequent biodiversity loss.

A system of embankments known as polders, consisting of dykes and
sluicegate controls were constructed by the Bangladeshi government in
1960s to control oceanic water intrusion, protect against cyclones and
support coastal agriculture. Poor maintenance and competition for re-
sources has however resulted in many poorly functioning polders and
sluice gates. Poor drainage, land subsidence, and soil salinity pose
mounting problems, although their effect is spatially heterogeneous
(Krupnik et al., 2017). The diversity of these linked socioecological
issues calls into question the usefulness of standard and ‘blanket’ de-
velopment approaches (Goswami et al., 2014). This research responds
to these theoretical and methodological challenges and employs panel
data models to the study of farming systems change both within and
outside polders in Bangladesh's central coast. Our objective is to im-
prove understanding of farm trajectories of change by untangling multi-
level drivers that influence farming systems dynamics, and to use this
information to inform relevant policy aimed at sustainable develop-
ment in coastal South Asia.

2. Conceptual framework: farm typologies and drivers of change

The socioecological views explaining agricultural growth, unlike
population-pressure theories by Mathusian (neo-Malthusian) and
Boserupian (Boserup, 1965), emphasize human-environment relation-
ships and their influence on agriculture (Ali, 1995). These relationships,
however, are driven by numerous socioecological factors, particularly
the multiple levels of constraints imposed by the population pressure,
biophysical environment, and the socio-technological and economic
abilities of farm households to reduce and modify those constraints (Ali,
1995; Aravindakshan et al., 2018). These constraints can be harnessed
to sustainably intensify farming systems rather than leading to un-
controllable natural resource depletion. To do so, the forms (types) and
pathways of farming systems responses should be understood and
modeled by socioecological drivers across spatio-temporal scales.

We outline a conceptual framework for the study of farm trajec-
tories of change at different scales in consideration of the dynamics of
systems change (Fig. 1). The process of change is represented over time
(t), t1 to t2. In t1, a farming system may consist of ‘n’ number of farm
types, which are likely to follow ‘m’ number of pathways with a prob-
ability ‘p’. This results in n + q farm types at time t2, with q < 0 if
farming systems tend towards homogeneity (less diverse) in structures
and functions over time, and q > 0 if diversity increases. ‘q’ can take
any value including 0, but not< ‘−n’.

The factors driving these dynamics include complex and interacting
biophysical, socioeconomic, behavioral, or social influences that op-
erate at multiple scales (Hettig et al., 2016). Macro- and meso-level
factors are exogenous and beyond the control of individual farmers;
micro-level factors are conversely endogenous and subject to farmers'
agency. A farm belonging to a particular type undergoes change over
time, forming a trajectory of change in terms of selected farm features.
Although we only show two pathways of change in Fig. 1, a farm has

multiple ‘m’ options based on the direction and magnitude of influence
of different factors. This conceptualization is intended as a general
model of farm trajectories and factors of change, although it is likely to
differ from system to system according to prevailing drivers.

At the macro-level, three major factors are widely considered to
influence agrarian change over time. Firstly, population density is
considered as a major driver of agricultural intensification as it can
increase both the demand for food and supply and demand for farm
labor, in addition to land fragmentation (Boserup, 1965). Declining
population density on the other hand may lead to farmland con-
solidation, land fallowing, and/or land sales and sharecropping. Sec-
ondly, economic growth may change diets and consumption patterns,
thereby increasing demand for food products even without population
growth. Third, variability in climate and extreme weather events – for
example tropical storms and cyclones in the Bay of Bengal (Knutson
et al., 2010; Huq et al., 2015) – may affect agricultural change (Hazell
and Wood, 2008).

The diversity of farming systems can be represented by typologies
that segregate farm households into different farm types which may be
defined by the structural (e.g. landholding, crops, livestock size) and/or
functional variables (e.g. cropping intensity, technology adoption) that
may result from interactions between micro- and meso-level factors,
and macro-level drivers (Fig. 1). A range of micro-level factors, in-
cluding past experience of cropping, household level adoption of im-
proved crop varieties, irrigation, and machinery, tenure and land
fragmentation could influence household livelihood strategies
(Piotrowski et al., 2013; Paul and wa Gĩthĩnji, 2018). Farmers' decisions
could also be conditioned and mediated by meso-level factors, in-
cluding access to finance, extension services and civil infrastructure
that in turn can influence relative farm input-output prices and access
to new technologies and markets (Shiferaw and Bantilan, 2004; Amjath-
Babu et al., 2016). Many studies of agrarian change focus on macro-
level drivers without considering lower level drivers or the diversity of
farming systems types (cf. Boserup, 1965; Turner and Ali, 1996; Pingali,
2012). Furthermore, assumptions of the homogenous impact of multi-
level factors across farm types may be overly simplistic. For example, in
case of farm types experiencing land scarcity, population growth can
lead to fragmentation of landholdings and competition for natural re-
sources. An additional challenge in the study of agrarian change is the
difficulty in measuring the dynamics of farming systems change in and
of itself. Our approach, detailed below, is to first illustrate the farm
types present at a given time ‘t1’ and proportion of farms changed from
one type to another in a time ‘t2’, then subsequently identifying the
dominant variables influencing these changes. These variables are then
related to potential micro-, meso- and macro-level driving forces.

3. Methods and materials

3.1. Study area

The study area in the south-central part of Bangladesh has been
identified as potentially suitable for cropping systems intensification
using surface water irrigation to forgo Rabi season land fallowing
(Krupnik et al., 2017). The region is characterized by a dense network
of interconnected rivers and natural canals that flow into the Bay of
Bengal. Annual rainfall ranges from 1955 to 2100 mm (BBS, 2013),
with a humid sub-tropical climate. Most soils are medium to high tex-
tured silty clay loams (SRDI, 2010). The southern-most part of the
central coast (Patuakhali, Barguna and Pirojpur districts) is protected
by polders constructed since 1960s. So far 123 polders covering an area
of about 13 million ha have been constructed across coastal Bangladesh
that include 6000 km of channels, 2500 water control structures, and
5000 km of embankments (World Bank, 1990).

Across Barisal, Patuakhali, Barguna and Pirojpur, approximately
70% of the households within polders are engaged in farming, while
farming households are 59% outside the polders (BBS, 2016). The
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farming systems both within and outside polders are traditionally
mixed, in which rice, livestock and pond aquaculture are integrated on
the same farm. The majority of agrarian households (HHs) both within
and outside polders are engaged in rainfed cropping in the Kharif (mid-
March to mid-November) and Rabi (mid-November to mid-March)
seasons. Kharif sowing coincides with the onset of monsoon, and is
further divided into pre-monsoon Kharif-1 (mid-March to mid-July)
during which local ‘aus’ rice varieties are grown, and monsoon Kharif-2
(mid-July to mid-November) when aman rice is grown. The Rabi season
falls during the dry winter period, when farmers within polders grow
primarily pulses, while farmers in non-polder areas cultivate pulses,
mustard and vegetables. Irrigated Rabi season rice production known as
‘boro’ occurs in select areas proximal to water sources.

3.2. Data and sample

We developed a balanced panel dataset at farm household level of
502 HHs in coastal Bangladesh in Barisal division, spanning 20 years
from 1995 to 2015 as part of the multi-year Cereal Systems Initiative for
South Asia (CSISA) project. This dataset is compiled from a farm
household level primary survey, NGO records pertaining to household
characteristics, farmer focus groups and secondary data sources.
Sample were selected from a list of farm HHs provided by the NGO
(Bangladesh Development Society) that keeps village level records of
selected coastal districts in Southern Bangladesh. Two districts within
polders (Patuakhali and Barguna) and a single district outside polders
(Barisal district) were selected for the study (Table 1; Fig. 2). We se-
lected these three districts of the total 27 districts in southern Bangla-
desh due to specific interest considering the potential for crop in-
tensification and surface water irrigation in coastal Bangladesh (see

Krupnik et al., 2017). In addition, data from districts other than the
above for the time period 1995–2010 was not available from our
partner NGOs or other sources for the study.

A non-probability purposive sampling procedure was subsequently
used to select HHs from the list whose information on select variables
(Refer Table 2 for variable description) were available in the NGO re-
cords. Out of the 311 and 336 households outside and within polder
areas in the list, 107 and 38 households were excluded due to data gaps,
respectively. A final sample of 204 HHs outside polders and 298 HHs
within polder areas were selected such that at least 5% of all HHs in
each of the selected villages were sampled as advised by Turner (2003).
HH level information on several variables for these selected HHs,
spanning for a period of 1995–2010 were then compiled. These same
HHs were surveyed in 2015 by the authors in order to develop a twenty
year panel data set by combining the compiled information with the
authors HH survey. Above panel data set used in this paper is made
openly available by CIMMYT DataVerse for interested users here:
http://hdl.handle.net/11529/10898.

The variables in the panel data set developed included farm struc-
tural and functional characteristics, household resource endowment,
agricultural management information, and data on off- and on-farm
income, in addition to biophysical and socio-economic attributes.
Village-level population and demographic data for twenty years period
used in this study was obtained from Bangladesh Bureau of Statistics. In
addition to the above, gaps from missing data were filled by collecting
and validating information through a combination of 9 farmer focus
group discussions and presentation of raw data to household members
and through secondary sources including household income and ex-
penditure survey (HIES) by Bangladesh government. Graphical over-
views of selected variables for years 1995 and 2015 are given in Figs. 3

Fig. 1. Theoretical framework for farm trajectories of change
and select potential influencing factors. Blue and red solid
lines indicate hypothetical trajectories (pathways) followed by
a farm type. Blue and red dots indicate alternative trajectories
possible. The large blue sphere on the bottom left represents a
farm type which captures, for example, households' land-
holding, fallow land, sharecropped land, cropping, livestock
and aquaculture assets, and off-farm activities. (For inter-
pretation of the references to color in this figure legend, the
reader is referred to the web version of this article.).

Table 1
Details on study locations.

Environment District Village names Predominant crops by season n

Kharif-1 Kharif-2 Rabi

Non-polder Barisal Dehergati, Barpasha, Tabirkathi aus rice aman rice boro rice, vegetables, mustard, pulses 204
Polder Patuakhali and Barguna Dakshin Bazargona, Auliapur aus rice aman rice Pulses, groundnut 298

Paschim Chakamaiya, East Amirabad, Angulkata, Bazarkhali

Note: In Bangladesh and several parts of South Asia including eastern India, rice is cultivated three times in a year differentiated by names “aus, aman or boro”. The
aman (broadcast and transplanted) rice is generally cultivated in mid-July to mid-November, sown with the onset of South-west monsoon rains, boro (irrigated rice)
in Feb-May, and aus rice in mid-March to mid-July cropping seasons utilizing summer rains.
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and 4 for sample outside and within polders, respectively. Detailed
summary statistics are provided in Table 2.

3.3. Analytical process

Our analysis for farm HHs outside polders (OP) and within polders
(WP) proceeded in three steps. First, we developed farm typologies for
farm households outside and within polders separately. Distinct farm
types were identified for 1995 and 2015. In the second step, we iden-
tified the most important variables contributing farm type changes
across panel years. In the last step, we identified the multi-level factors
driving farm type dynamics using panel data regression models. A
historical review of literature was also carried out to complement our
findings.

3.3.1. Analyzing farm type dynamics
In the first analytical stage, transition from one farm type to another

is captured by farm trajectories of change over time. Towards this, both
Principal Component analysis (PCA) and Cluster Analysis were em-
ployed (Alvarez et al., 2018) to categorize farm HHs based on the basis
of their structural (resource endowment) and functional (production
and land use objectives/livelihood strategies) characteristics (Kuivanen

et al., 2016). Following the PCA on the data, Agglomerative Hier-
archical Clustering employing Ward's minimum-variance method, was
done on the PCA (PCs' scores) to identify clusters. The Ward's method
minimizes within-cluster variation by comparing two clusters using the
sum of squares between the two clusters, summed over all variables
(Alvarez et al., 2018). The number of clusters (i.e. farm types) was
defined using the dendrogram shape, in particular the decrease of the
dissimilarity index (“Height”) according to the increase of the number
of clusters (Alvarez et al., 2018). We named these clusters based on four
criteria: own landholding area, crop-livestock-aquaculture activities,
off-farm income and sharecropping. We used Bangladesh's National
Agricultural Extension Policy criteria to categorize farms based on the
first criteria, i.e. landholding area, such that marginal farmers are those
with landholdings of 0.2 to 0.6 ha; small farmers between 0.61 and
1.00 ha; medium between 1.01 and 3.03 ha; and large 3.03 ha or more
(MOA, 2012, pp. 2; para 3).

In the second stage, we explored the principal components for
changes in typology variables' contribution across panel years from
1995 to 2015 to farming systems change. Variables highly correlated
with a principal component (PC) contribute most to its scores (Husson
et al., 2017). The percentile contributions of each variable to the
principal components can be assessed to determine if any variables

Fig. 2. Map of the study area showing study districts. Black spots indicate the study villages. Salinity data refers to soil and water salinity and was taken from SRDI
(2010). White colored areas denote lack of salinity data.

S. Aravindakshan, et al. Agricultural Systems 177 (2020) 102695

5



strongly influence a particular PC (David and Jacobs, 2014). The con-
tribution (Ck) of a variable ‘k’ to a given PC is calculated as:

∑
=

=

C ((cos ) *100)

(cos )
k

k

k

K

k

2

1

2

(1)

where (cosk)2 in Eq. (1) is the squared cosine of a variable ‘k’ that re-
presents the quality of the representation of that variable quantified as

Table 2
Descriptive statistics for key structural and functional farm variables used in the analyses, disaggregated for polder and non-polder environments.

Variables Unit Farms outside polders (n = 204) Farms within polders (n= 298)

1995 2015 1995 2015

Mean SD Mean SD Mean SD Mean SD

I. Candidate typology variables
A. Structural variables
Age of the household head Years 37.79 10.93 50.08 12.66 36.43 10.34 47.14 12.55
Education of the household head Years 4.24 3.27 5.44 3.60 3.94 3.08 4.94 3.29
Household size of the household Numbers 10.74 2.05 5.89 2.07 10.92 2.09 5.65 2.19
Total land owned by the household ha 0.70 0.52 0.41 0.38 0.97 0.87 0.54 0.46
Tropical livestock unitc TLU farm—1 4.50 1.22 0.38 0.56 4.62 1.32 1.05 1.41
Pond area under aquaculture ha 0.05 0.17 0.04 0.24 0.05 0.08 0.08 0.22
Sharecropping intensityd % 0.19 0.23 0.31 0.30 0.17 0.27 0.29 0.28
Total family labor used on farm psd year —1 262.78 82.84 163.41 106.68 254.51 76.55 181.79 105.26
Total hired labor used on farm psd year—1 83.13 54.46 75.83 47.48 84.86 67.32 74.22 56.22
Annual income of the household

(000)
BDT 18.22 16.57 125.48 136.17 15.54 13.63 159.01 186.62

Annual net savings of the household
(000)

BDT 10.81 14.71 20.30 26.85 5.74 5.42 27.60 35.95

B. Functional variables
Area under cash crops ha 0.35 0.19 0.37 0.33 0.48 0.22 0.43 0.30
Area under food crops ha 1.25 1.04 0.74 0.50 1.08 1.15 0.69 0.59
Gross cropped area ha 1.61 1.07 1.10 0.67 1.56 1.22 1.12 0.80
Cropping intensitye % 145.64 28.67 168.57 18.25 145.30 33.14 151.95 28.12
Area under irrigation ha 0.01 0.08 0.03 0.08 0.00 0.00 0.05 0.10
Amount of Aman season fallow ha 0.03 0.10 0.04 0.12 0.27 0.38 0.25 0.45
Amount of Rabi season fallow ha 0.91 1.00 0.39 0.33 0.87 1.11 0.44 0.30
Share of total crops sold % 70.61 7.93 80.34 14.54 70.99 9.97 85.31 8.80
Months of food self-sufficiency Number of months 9.80 1.57 10.30 2.18 9.24 1.64 10.08 2.34
Share of expenditure for food % 56.34 16.38 62.48 18.00 61.82 13.30 58.88 17.96
Off-farm income % 41.98 31.31 56.60 27.35 41.28 33.84 49.42 30.46
Remittances received per annum

(000)
BDT 0.03 0.29 10.66 19.76 0.01 0.20 14.37 23.40

II. Factors driving farm trajectories of change
Micro-level household variablesA.
Household's experience in cropping Years 20.81 11.00 33.37 12.70 19.35 10.12 30.66 12.62
Household head's involvement in

farming
Ordered categorical (1 = no involvement, 2 = partial
and 3 = full involvement)

1.48 0.77 1.37 0.74 2.43 0.82 2.84 0.51

Share of land under machine tillage % 1.71 5.70 98.75 5.37 0.00 0.00 95.40 13.58
Degree of fragmentation of

farmlandb
Scale of 1 = low to 5 = high level 3.35 1.22 2.25 0.72 2.39 2.22 2.16 1.67

Inundation class Lowland = 1, medium land = 2 and 3 = highland 2.08 0.48 2.00 0.40 2.35 0.60 2.45 0.51
Perceived soil fertility of the farm Low = 1, medium =2 and 3 = high 2.36 0.88 2.00 0.78 2.20 0.91 2.21 0.80
Perceived soil and water salinity of

the farm
Low = 1, medium =2 and 3 = high NA NA NA NA 2.08 0.53 1.99 0.99

Meso-level conditioning variablesB.
Distance to input-output markets km 3.88 1.72 2.64 0.98 8.30 3.42 5.68 3.12
Distance to the irrigation canal km 0.38 0.24 0.14 0.13 0.19 0.17 0.14 0.15
Distance to the main road km 1.66 0.96 1.10 0.52 1.78 1.17 1.65 1.05
Access to extension Dummy (1 = has access, 0 otherwise) 0.46 0.50 0.67 0.47 0.40 0.49 0.47 0.50
Access to credit Dummy (1 = has access, and 0 otherwise) 0.41 0.49 0.75 0.44 0.27 0.45 0.08 0.27
Tenure rights Dummy (1 = has access, and 0 otherwise) 0.27 0.44 0.16 0.37 0.72 0.45 0.93 0.26
Availability of hired farm labor Dummy (1 = has access, and 0 otherwise) 0.51 0.50 0.50 0.50 0.21 0.41 0.16 0.37
Macro-level driver variablesC.
Village population Numbers 1908.47 817.69 2053.67 861.27 4018.43 3116.31 4674.00 3645.76
Cyclone severity indexa – 3.72 2.52 1.45 0.94 3.82 2.61 2.74 2.44

Notes:- psd = person-day, which is 8 h of work.
a Index developed by summing up the product of cyclone events and farmer's perception on an individual cyclone's severity on a scale of 0–3 in the respective years

observed.
b Categories on a scale of 1–5; 1 = low level and 5 = high level of fragmentation. 1USD was ∼40 BDT in 1995 while it was ∼78 BDT in 2015.
c Tropical livestock unit (TLU) was calculated according to method given by Harvest Choice 2015 (https://harvestchoice.org/data/an05_tlu).
d Sharecropping intensity is ratio of sharecropped land to total land available for cultivation in %.
e Cropping intensity averaged across fields is calculated as ×

− −

− − 100Gross harvested area ha farm year
Total land area ha farm year

( ) 1 1

( ) 1 1 and will exceed 100% where double or triple croppingis practiced.

All monetary values are nominal.
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the squared loadings for that variable in the principal component.
Squared cosines (cos2) thus help locate the variables important for a
given PC based on their relative contribution (Abdi and Williams,
2010). Cumulative contributions of all variables in the selected PCs
(with eigenvalues ≥1.0) for each panel year (1995 to 2015) were as-
sessed to identify the variables showing strongest contribution to var-
iance. Those with the greatest contribution across years are assumed to
have robust linkages to change trajectories among sampled farms.
These are the ‘farm dynamicity inducing variables’ that were analyzed
using panel regression models in the second stage as described below.

3.3.2. Modelling multi-level factors and drivers influencing farm change
trajectories

In the third analytical stage, we analyzed the effects of multi-level
factors/drivers of change on dominant variables contributing to farm
type dynamics in panel years (T) by employing panel data modelling
(Hsiao et al., 2000; Baltagi, 2008). Let the panel dataset contain ob-
servations of the multi-level factors and drivers of change (independent
variables), X1, X2, …, Xk and the dominant variables contributing to
farm type dynamics, whose identification is explained in Section 3.3.1
be treated as (dependent variables):Y1, Y2, …, Ym, with farm/farmer
specific effects: Zi'α. The model thus takes the form in Eq. (2):

= ′ + ′ +Y X β Z α εiit it it (2)

where i = 1, …, n and t = 1, …, T, where the first subscript, i, refers to
the farm being observed, and the second term t, refers to the observa-
tional year (T = 5 in our case). In Eq. (2), εit is the error term and Zi' is a
set of farm household-specific micro-level factors (Table 2). Since Zi' in
the data has both observed and farmers' perceived variables, the or-
dinary linear model fitted by least squares would suffer from bias
(Baltagi, 2008). We therefore estimated a generalized fixed effects (FE)
model (Eq. (3)) when Zi' is unobserved, but correlated with Xit, and
when Zi' is observed, then we estimated a generalized random effects
(RE) model by introducing a household specific random element μi as in
Eq. (4).

= ′ + +Y X β α εiit it it (3)

= ′ + + +Y X β α μ εi iit it it (4)

We ran both FE and RE estimators for all dependent variables Y1, Y2,
…, Ymobtained from stage 1 and compared results using the Hausman
test, the results of which are reported in Section 4.3. The effect of multi-
level factors/drivers were assessed from the coefficient estimates, i.e.
‘βs’ and ‘αs’. All statistical analyses are conducted using packages plm
(Croissant and Millo, 2008) and FactoMineR (Husson et al., 2017) in R
(version 3.3.2).

4. Results

4.1. Farm type dynamics

Farm typology analysis of data yielded a multivariate classification
of distinct farm typologies segregated by those located within and or
outside polders. Farm types observed in five-year increments from 1995
to 2015 are provided in the Supplementary Materials (Table SM 1 and
SM 2). Performing typology analysis on 204 farms outside polders re-
vealed seven distinct farm types for the baseline year 1995 (Fig. 5A).
The same farms were re-classified into three types in 2015 (Fig. 5B).
The dendrograms and cut-off points based on dissimilarity for all the
years (1995–2015) for farms located within or outside polders are
shown in the Supplementary Materials (Figure SM 1 (A) and (B)). Farm
types identified outside polders are labelled as t11 to t17, and t21 to t23
respectively, where t1 and t2 correspond to time periods 1995 and 2015.
Numbers conversely correspond to typology clusters. A detailed ac-
count of the farm types with the names defining structural and func-
tional characteristics are provided in the Supplementary Materials (Text

SM 1 to SM 4). For farms located within polders, the trend with respect
to farming systems was similar to those outside polders: consolidation
into fewer farm types was observed over time in both locational cate-
gories. The typology analysis for farms within polders for1995 and
2015 identified six and three farm types, respectively (Fig. 5C and D).

Fig. 6 shows shifts between farm types from the baseline in 1995 to
the final year of analysis in 2015. Among farms outside polders, the
proportion of marginal farms increased from 52% in 1995 to over 70%
by 2015. The share of small farms also increased by 8% during the same
period, while medium-sized farms whose proportion was 26% in 1995
disappeared entirely by 2015. Out of the medium-sized farms with rice-
livestock-sharecropping systems (t17), 92% became small farms with
rice-pulse and aquaculture–sharecropping systems (t23) in 2015, while
the remaining 8% became marginal farms with rice-aquaculture sys-
tems and off-farm activities (t21). Among farms within polders, 84% of
small farm types transitioned into marginal farms by 2015. The re-
maining farms changed to two small farm types (t2B and t2C) by 2015.
There was only one marginal farm type in 2015 that can be described as
rice-pulse-aquaculture systems with off- farm income (t2A). These
constituted 67% of observed farms in 2015. In 1995, two medium-sized
farm types were observed that comprised 20% of all farms surveyed.
Roughly 22% of medium-sized sharecropping farms with rice-livestock-
pulse-aquaculture systems (t1E) farms transitioned into marginal farms
with rice-pulse-aquaculture supplemented by off-farm income (t2A) by
2015. The remaining 78% shifted into small rice-pulse-aquaculture and
a significant proportion of sharecropping activities (t2B). Ninety-one
percent of medium- sized sharecropping farms with rice-livestock-
pulse-aquaculture systems (t1E) transitioned into type t2B (Small farms
with rice-pulse systems and off-farm income) by 2015, while 9% shifted
into marginally sized farms with rice- aquaculture systems and off-farm
income (t2C).

Within the polders, the real income from edible crops showed ne-
gative growth (−1.6%) for marginally sized farms between 1995 and
2015, there was however a remarkably higher growth rate from
aquaculture (> 950%) and remittance (> 500%) (Table SM 6). Income
from edible crops for small sized farms also exhibited a positive growth
rate, but at just 6% during this twenty year period. Both income from
aquaculture and remittance showed increase in growth rate of 180%
and 131% respectively for small farms outside polders. A trend towards
non-farm income generation also appears to be growing among mar-
ginally sized farms outside polders. This shift towards off-farm income
outside polders is however less prominent among smaller farms, despite
a slight 2% growth rate (Table SM 5). Among farms in polders, trends
during this twenty years are only notable for small farms, as marginally
sized were not existent in 1995, and medium sized farms had dis-
appeared by 2015 (Fig. 8B). Growth in non-farm income (6%) was
however observed with increasing remittances and off-farm income
generation, in addition to income from cash crops (Fig. 8B and Table
SM 6). The contribution of livestock to household income within
polders has also conversely declined over time (Fig. 8B).

4.2. Relative farmland use changes and drivers

Five distinct cropping patterns practiced by farmers located outside
polders were distinguished during the Kharif-1 (spring), Kharif-2
(summer), and Rabi (winter) seasons. Their corresponding drivers of
change are found in Fig. 7A. Cropping patterns within polders were
equally diverse, but their abundance differed when compared to those
found outside polders (Fig. 7B). Four cropping patterns were practiced
by most farms within polders during the Kharif- 1 (spring), Kharif-2
(summer), and Rabi (winter) seasons (Fig. 7B). During the 1995–2007
period, ‘fallow-aman rice- lathyrus’ rotations were practiced by>60%
farmers with land outside polders.

Both within and outside polder areas, cyclones Sidr and Aila appear
to have had adverse impacts on irrigated rice production during 2007
and 2009. Farmers turned to less intensive cropping patterns including
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pulses (which were slowly becoming more profitable) and land fal-
lowing in the wake of both events. Towards the late 1990s, ‘fallow-
aman rice- mungbean’ cropping sequences emerged as an important
rotation outside of polders. By 2015 this pattern dominated —>70%
farms surveyed outside of polders followed this pattern, with mungbean
as a widely favored pulse.

By the year 2000 each village sampled within polders on average
had 4–5 low-lift irrigation pumps. This helped expansion of irrigated
boro rice cultivation by drawing water from rivers and canals, though
cyclones Sidr and Aila caused later damage to sluice gates that regulate
water inflow and outflow from the canals. Sluice gates, which were
initially installed through governmental programs, have yet to be re-
paired in a number of the surveyed villages. As an alternative to irri-
gated cultivation, farmers have slowly shifted to minor pulses including
black gram, cowpea and field pea, grown prior to with spring rice (aus).
Major pulses such as mungbean and lathyrus were also popular. The
‘fallow-rice-various pulses’ cropping pattern remained prominent until
2010 when mungbean began to replace other pulses. The other

predominant cropping pattern, ‘fallow-aman rice-fallow’, declined from
10% to 4% between 1995 and 2015.

4.3. Factors driving farm trajectories of change among polder and non-
polder sample

We identified variables that contributed strongly to each principal
component by computing the percentage contribution (Ctr) of each
typology variable within a given principal component (Abdi and
Williams, 2010; Husson et al., 2017) using Eq. (1) and present them in
Fig. 8. Principal components with eigenvalues ≥1 selected for com-
puting contribution explained>70% of the variability in farm ty-
pology data both within and outside polders. Within polders, the first
four PCs obtained for the years 1995, 2000, 2005 and 2015 explained
cumulative variability of 77%, 73%, 73% and 72% respectively. In
2010, however, only the first three principal components had eigen-
values ≥1, explaining roughly 70% variability for samples outside the
polder area in 2010. Within polders, the first three principal

Fig. 5. Results of the typology analysis for farms within (A, B) and outside polders (C, D) in the year 1995 (A, C) and 2015 (B, D) along the first two principal
components. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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components obtained for years 1995, 2000 and 2015 had eigenvalues
≥1, which explained cumulative variability of 77%, 70% and 73%
respectively. While for years 2005 and 2010, first five principal com-
ponents had eigenvalues ≥1. They explained 73% and 76% of cumu-
lative variability for samples within polders for 2005 and 2010. Esti-
mates of cumulative contributions of each typology variable for Fig. 8
are provided in the Supplementary Materials (Tables SM 3 and SM 4).
Fig. 8 indicates that farm type dynamics are strongly linked to cropping

intensity, off-farm income and landholding outside polders, while in-
side polders, the dynamics is linked to cropping intensity, off-farm in-
come and livestock.

Tables 3 and 4 provide panel data model estimates of factors in-
fluencing farm change trajectories for samples within and outside
polders. The Hausman test for the goodness of fit of the fixed effects
versus random effects for all models informs whether the random ef-
fects estimator is consistent and the model is valid. The test was

Fig. 6. Farm type dynamics in areas outside (panel A) and within polders (panel B) between 1995 and 2015 in south-central Bangladesh. Arrows represent the
trajectory of change from one farm type in 1995 to another in 2015. Values within circles show the percentage of farms transitioning. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.).

Fig. 7. Relative farmland use change in terms of cropping patterns for Kharif and Rabi seasons that represents proportion of HHs in non-polder (A) and polder (B)
areas. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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significant (P > 0.05), rejecting the null hypothesis of a consistent
fixed effects estimator for all models.

4.3.1. Micro-level factors influencing farm trajectories
Among micro-level factors, farm household heads' experience ex-

erted a significant (P ≤ 0.05) negative influence on cropping intensity
within polders (Table 4). Outside polders, this effect though negative
was nonetheless insignificant (Table 3). During focus groups, older
farmers revealed their preference for growing rice over cash crops when
monsoon rains are available, with land left fallow in the subsequent

winter season. Rice being the main staple crop in Bangladesh, this
preference according to them is to ensure household food security.
Compared to households with no direct involvement in farming op-
erations (i.e., those who tended to work as hired laborers), households
fully involved in agricultural production had average cropping in-
tensities that are 1.3 times greater, ceteris paribus. Household heads’
direct involvement in farming activities however tend to negatively and
significantly (P ≤ 0.001) influence the households’ share of off-farm
income in polders.

Within polders, the proportion of land upon which farmers used

Fig. 8. Variable contribution to principal components across panel years. Index values of cumulative contributions in PCs with eigenvalues ≥1.0 are plotted, taking
1995 as base year = 100. Dynamicity inducing variables, i.e. the variables influencing farm type dynamics and variability significantly are represented by dotted red
line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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machinery for tillage was positively related to cropping intensity
(P ≤ 0.05) (Table 4). Mechanized tillage was inversely related
(P ≤ 0.05) to livestock holdings both within and outside of polders.
Land fragmentation into separate parcels was observed to have a ne-
gative (P ≤ 0.001) influence on cropping intensity in all study locations
(Table 4). Farmers' perceptions of soil fertility showed a positive
(P ≤ 0.1) influence on cropping intensity outside polders, although
within polders, no relationship could be discerned. Farmers located
outside polders did not report problems of soil or water salinity, while
those within polders reported low, moderate and high soil and water
salinity. Perceived soil and water salinity within polders had a negative
(P ≤ 0.1) impact on cropping intensity.

Another qualitative variable farmers were surveyed on was
‘Inundation class”. This variable was based on classifications described

by Brammer (2013) as the average perceived depth of flooding during
the monsoon season, and is widely used by farmers to describe their
land types. The level of inundation during the monsoon is important in
determining the variety of rice that can be grown, and the speed at
which floodwaters vacate following the summer monsoon to permit
cropping in the early winter season (Krupnik et al., 2017). The official
land inundation classification system is complex, with five classes. For
simplification, we asked farmers to report if their fields on average
belonged to “low” (> 180 cm average water depth) “medium”
(30–180 cm water depth) or “high” (0–30 cm water depth) during the
monsoon season. Our results indicated that lower inundation depths
associated with progressively higher land on a micro-elevation basis

Table 3
Factors driving farm change trajectories in cropping intensity, landholding and
off-farm income outside polders (random effects model; n = 204).

Cropping
intensity (%)

Land owned (ha) Off-farm income
(%)

Model intercept 192.580
(2.471)

0.0717
(0.189)

61.516***
(10.996)

A. Micro-level household determinants
Experience in

farming
−0.003
(0.016)

0.003*
(0.001)

0.079
(0.074)

Household head's
involvement in
farming

1.291*
(0.529)

−0.022
(0.040)

4.130
(2.358)

Share of land under
machine tillage

0.013
(0.007)

−0.002**
(0.001)

−0.157***
(0.034)

Degree of
landholding
fragmentation

−1.146***
(0.042)

−0.010
(0.032)

6.877***
(1.864)

Perceived soil
fertility of the
farm

1.406**
(0.456)

0.037
(0.035)

1.574
(2.032)

Inundation class 0.640*
(0.310)

0.084*
(0.035)

−7.080***
(2.013)

B. Meso-level conditioning factors
Distance to the

input-output
markets

−1.640***
(0.220)

0.014
(0.010)

−2.674**
(0.974)

Distance to irrigation
canal

−1.3924
(0.998)

0.157*
(0.076)

−1.317
(4.43)

Distance to the main
road

−1.2658***
(0.340)

0.077**
(0.026)

−4.939***
(1.495)

Access to extension 3.744***
(0.690)

0.052
(0.410)

−0.197
(3.055)

Access to credit −0.144
(0.918)

−0.071
(0.061)

2.103
(4.087)

Tenure rights 2.540**
(0.923)

−0.091
(0.070)

−2.779
(4.108)

Labor availability 4.134***
(0.872)

0.058
(0.050)

−2.866
(3.884)

C. Macro-level drivers
Village population

density
0.001***
(0.000)

−0.001
(0.00)

0.002
(0.001)

Cyclone severity −3.165***
(0.176)

−0.025*
(0.010)

−1.986*
(0.784)

Model goodness of fit measures
Total Sum of Squares: 809000 237.33 792130
Residual Sum of

Squares:
36181 211.09 716480

R-Squared: 0.655 0.611 0.673
Adj. R-Squared: 0.641 0.609 0.662
F-statistic: 1429.680* on 15

and 1004 DF
8.320* on 15 and
1004 DF

7.067* on 15 and
1004

Hausman Test (p-
value)

Chi2 = 22.762,
df = 15,
P = 0.089

Chi2 = 15.529,
df = 15,
P = 0.414

Chi2 = 13.793,
df = 15,
P = 0.541

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% levels.
Coefficient estimates of linear probability models are shown with robust stan-
dard errors at household level in parentheses.

Table 4
Factors driving farm change trajectories in cropping intensity, tropical livestock
units and off-farm income within polders (random effects model; n = 298).

Cropping
intensity
(%)

Tropical livestock
units

Off-farm income
(%)

Model intercept 190.952***
(1.458)

3.573***
(0.385)

53.471***
(7.126)

A.Micro-level household determinants
Experience in

farming
−0.026*
(0.013)

−0.005
(0.003)

−0.024
(0.063)

Household head’s
involvement in
farming

0.189
(0.329)

0.004
(0.87)

−5.518***
(1.610)

Share of land under
machine tillage

0.009*
(0.005)

−0.015***
(0.001)

−0.039
(0.026)

Degree of
landholding
fragmentation

−0.409***
(0.087)

−0.006
(0.023)

4.728***
(0.423)

Perceived soil
fertility of the
farm

−0.260
(0.295)

−0.015
(0.078)

−1.09
(1.442)

Perceived soil
salinity in the
farm

−0.473*
(0.210)

0.009
(0.056)

6.065***
(1.031)

Inundation class 0.253*
(0.116)

−0.087
(0.077)

−2.253
(1.419)

B. Meso-level conditioning factors
Distance to the

input-output
markets

−0.683***
(0.092)

0.051*
(0.242)

−1.496***
(0.449)

Distance to irrigation
canal

−1.759*
(0.837)

0.259
(0.247)

1.233**
(0.458)

Distance to the main
road

−1.977***
(0.042)

0.092
(0.112)

0.504
(2.072)

Access to extension 2.375***
(0.451)

−0.006
(0.119)

−0.599
(2.204)

Access to credit 0.906
(0.600)

0.192
(0.158)

−3.507
(2.935)

Tenure rights 2.706***
(0.704)

−0.109
(0.186)

2.175
(3.442)

Labor availability 4.946***
(0.588)

0.067
(0.155)

−0.297
(2.872)

C. Macro-level drivers
Village population

density
0.001
(0.001)

0.001
(0.000)

−0.001
(0.000)

Cyclone severity −1.686***
(0.148)

−0.093*
(0.039)

−1.053
(0.722)

Model goodness of fit measures
Total Sum of Squares 1346100 3292.9 1230100
Residual Sum 43380 3019.5 1036600
R-Squared: 0.668 0. 630 0.457
Adj. R-Squared 0.657 0. 621 0.456
F-statistic: 2764.660* on 16

and 1473 DF
8.335* on 16 and
1473 DF

17.178* on 16
and 1473 DF

Hausman Test (p-
value)

Chi2 = 11.872,
df = 16,
P = 0.753

Chi2 = 12.147,
df = 16,
P = 0.734

Chi2 = 11.39,
df = 16,
P = 0.785

Notes: *, **, and *** indicate significance at the 10%, 5%, and 1% levels.
Coefficient estimates of linear probability models are shown with robust stan-
dard errors at household level in parentheses.
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positively and significantly (P ≤ 0.05) influenced cropping intensity
both within and outside polders (Table 4). Farms with a higher share of
fields on ‘highlands' are also more likely to be suitable for double-
cropping. This result that could be influenced by drainage problems
associated with land subsidence and poor polder engineering that
prevents timely winter cropping, even on highlands, within polder
systems in the central coast of Bangladesh (Krupnik et al., 2017). Model
estimates showed positive (P≤ 0.05) relationship between landholding
size outside polders and lower inundation depths (Table 3). These re-
sults indicate that farmers prefer in both locational classifications less
flood-prone lands that can be more reliably cropped.

Turning to micro-level factors influencing off-farm income, land
fragmentation positively and significantly (P≤ 0.001) influenced the
share of farm household's off-farm income both within and outside
polders. Outside polders, inundation class negatively (P ≤ 0.001) in-
fluenced off-farm income (Table 3). In other words, farms with higher
land less subjected to prolonged monsoon water stagnation were asso-
ciated with a 7% reduction in share of off-farm income.

4.3.2. Meso-level factors influencing farm trajectories
Both increasing distance to the market and main road from the farm

negatively and significantly (P ≤ 0.001) influenced cropping intensities
of all farms in the sample (Tables 3 and 4). A similar negative
(P ≤ 0.001) relationship was found between output market distance
and share of off-farm income within and outside polders (Tables 3 and
4). Access to extension on the other hand had a positive and significant
influence (P ≤ 0.001) on cropping intensity within polders (Table 4).
Access to credit was insignificant across locations, though approxi-
mately 5% of surveyed farmers in polders reported constraints in timely
availability and access to agricultural finance. Farmers with secure land
tenure were also found associated with increased cropping intensity
compared to those heavily involved in share cropping. Tenure rights
had a positive and highly significant influence (P ≤ 0.01) on cropping
intensities both within and outside of polders (Tables 3 and 4).

Irrigation canal proximally to farms had no significant influence on
cropping intensity or off-farm income outside polders (Table 3). Irri-
gation canals situated near farmers' fields conversely had a marginally
significant (P ≤ 0.1) and positive influence on larger farm size
(Table 3). Cropping intensity within polders decreased significantly
(P ≤ 0.05) with increasing distance to irrigation canals (Table 4). The
influence of irrigation canal distance on off-farm income within polders
was however positive and significant (P≤ 0.01), indicating that
farmers may seek off-farm income opportunities when irrigation is
distant and unreliable (Table 4). Our results also highlight the very
significant (P≤ 0.001) and positive relationship between labor avail-
ability and cropping intensity both within and outside polders (Tables 3
and 4).

4.3.3. Macro-level drivers influencing farm trajectories
The relationship between village population size and cropping in-

tensity was positive and significant (P≤ 0.001) outside polders
(Table 3). Population density however had no effect on the amount of
land owned or off-farm income (Table 3). Population growth also had
no association with cropping intensity inside polders, despite a positive
trend (Table 4). Importantly, past cyclone severity negatively and sig-
nificantly affected cropping intensities of farms both within and outside
polders (P≤ 0.001) (Tables 3 and 4). Past cyclones severity also ne-
gatively influenced the amount of land owned (P ≤ 0.05) and off-farm
income (P ≤ .05) outside polders (Table 3), while within polders, cy-
clones severity was negatively associated with the number of livestock
owned (P ≤ 0.05) (Table 4). A single unit increase in cyclonic severity
was associated with a two to three time reduction in cropping intensity
within and outside polders, respectively. During focus groups, farmers
who had experienced cyclones and extreme weather also indicated that
they responded by reducing cropped area or by fallowing to hedge
risks.

5. Discussion

Using a novel systems analysis approach integrating multivariate
statistics with panel data models that operationalize the theoretical
framework described in Section 2, we studied how biophysical pro-
cesses interact with complex human and management components that
define coastal farming systems both within and outside polder areas
using two decades of data. Farming systems studied exhibit spatial and
temporal dynamics that highlight how farm types transition over time
in response to multi-level drivers of change. Both within and outside
polders, marginal and small farms dominated in 2015, as compared to
larger farms twenty years earlier. The number of medium and large
farms for example also sharply declined in north-western Bangladesh
since 2005 (Misra, 2017). Similar observations have been made for
population dense and intensively cultivated landscapes in parts of
South East Asia and sub-Saharan Africa (Rigg et al., 2016; Jayne et al.,
2016).

Our findings highlight a consistent trend throughout for farms ob-
served outside polders. Once heterogeneous, rice-livestock farms have
shifted to more homogenous farms with aquaculture and increasing off-
farm income generating activities. Within polders, trends were only
notable for smaller farm types. Growth in remittances and off-farm
income generation was however observed, in addition to income from
cash crops. The contribution of livestock to household income con-
versely declined. Considering marginally sized farms within polders,
there was more than a nine and five-fold increase in income contribu-
tion from aquaculture and remittances, respectively. Income from ed-
ible crops for small sized farms also exhibited a positive trend, but at
just 6%. For smaller farms outside polders, both income from aqua-
culture and remittances showed increased growth rates of 180% and
131%, respectively. Farmers also shifted from subsistence aquaculture
to the production of commercial species including tilapia, pangasius,
and catfish (Hernandez et al., 2018). Unlike the south-western Ban-
gladesh where prawn production has competed with rice for land and
water resources, aquacultural intensification in south-central Bangla-
desh appears to have had limited negative environmental and social
impacts (Henriksson et al., 2018).

Irrespective of typology, farming systems in both the study locations
continued to be aman rice-based. Until approximately 2005, boro rice
production (during the winter Rabi season) also flourished both within
and outside polders, but then declined. In polders outside our study
area in south-western Bangladesh, concerns of elite capture of surface
water resources by commercial prawn farmers diverting saline water
into canal systems have been common (cf. Dewan et al., 2015). South-
central Bangladesh however has more hydrologically active freshwater
canal systems – in some cases even within polders (Krupnik et al.,
2017).

Between 1996 and 1998, national agricultural policy in Bangladesh
re-introduced fertilizer price subsidies. Changes included increased
control on input market price volatility, making fertilizers affordable
(Jaim and Akter, 2012). Farmers outside polders may have responded
by transitioning to new cropping patterns including ‘fallow- aman rice-
vegetables’, with the latter crop requiring increased fertilizer. This
period also saw the expansion of ‘fallow-aman rice-irrigated boro rice’
corresponding to expanding availability of low-lift surface water
pumps, in addition to fertilizer (Mottaleb et al., 2016). In the winter
season, boro rice area continued to decrease within and outside polders
from 2005 to 2010. This appeared to be a result of urea shortages that
followed the introduction of a government subsidized fertilizer voucher
system. Focus group interviews indicated that politically connected
farmers captured more vouchers than less well-connected farmers,
rending the system less efficient and negatively influencing aggregate
boro production. Differences in cropping patterns outside and within
polders were evident until 2010. Farmers outside polders favored
‘fallow-aman rice-lathyrus’ rotations compared to ‘aus rice-aman rice-
mungbean’ within the polders. Nonetheless, there is now a clear shift
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towards ‘fallow-aman rice-mungbean’ sequences in both areas, with a
definite growth in mungbean cultivation.

The GoB's Master Plan for Development in the Southern region
proposed by the MOA and FAO in 2013 suggests initiatives to increase
boro rice production in place of fallows. This however conflicts with the
growing popularity of mungbean in the winter season. Focus groups
indicated that low paddy prices and relatively higher labor costs pro-
vide disincentive against boro, in addition to high irrigation costs.
Although mungbean is favored as a low-input opportunity crop that
fetches better prices, it fairs poorly in the face of storms and water-
logging common in the coastal region (Biswas et al., 2018). Further
studies regarding its suitability vis-a-vis other options are still war-
ranted.

Changes in farm types appeared to be linked to dynamicity inducing
variables: (1) cropping intensity and (2) off-farm income, and (3)
landholding and livestock, the former two are for both outside and
within polders. Our analysis revealed the influence of multi-level so-
cioecological drivers of trajectories of farming systems change. Ours
results show that while cropping intensities both within and outside
polders reduce with increased farm fragmentation; farmers responded
to this and other environmental stresses through off-farm income gen-
eration. Bangladeshi inheritance laws stipulate the sub-division of land
to multiple heirs after loss of parents (Rahman and Rahman, 2009).
Amending these laws in order to prevent sub-division may be an im-
portant consideration in policy supportive of crop intensification.

Secure land tenure rights was positively associated with cropping
intensity. In focus groups, sharecroppers reported aversion to invest-
ment in land management or irrigation in the absence of secure land
rights. Tenure insecurity could also reduce farmers' interest in im-
proving soil quality over time as farmers discount future investments
(Tenaw et al., 2009). At current rates, the cost of securing tenure rights
through land registration is roughly 10% of total land value (Islam and
Lee, 2016). This is prohibitive to small and marginal farmers in the
coastal region, which provides evidence on the need for land tenure
policy reformation and improvements in informal land sharing ar-
rangements.

Our data also indicated that most farmers in the central coast have
tended to depend on inherent soil fertility with little application of
inorganic or organic amendments. This observation aligns with con-
cerns of declining soil fertility in Bangladesh (Barmon et al., 2008).
Balanced nutrient ‘budgets’ have been reported to contribute to
farmers’ willingness to shifts from single cropping to double and even
triple cropping in Bangladesh (Schulthess et al., 2019). Extension sys-
tems should therefore maintain a focus on appropriate nutrient man-
agement regimes.

The inundation classes to which a farm belongs had positive influ-
ence on cropping intensity: farmers with highlands and medium-high-
lands tend to grow more crops per year. On medium-lowlands and
below, as well as within polders with land subsidence, social (e.g. water
users' groups) and technical (e.g., drainage canals) may be necessary to
help drain stagnant water after the monsoon. Drainage systems are
however complex and will require careful coordination to permit land
preparation so a diversity of subsequent winter season crops can be
grown (Krupnik et al., 2017). Finally, the environmental risks posed by
cyclones had a negative influence on both cropping intensity and off-
farm income generation. There have been considerable crop losses as-
sociated with previous extreme weather events in coastal Bangladesh.
Opportunities for climate services that increase farmers' ability to an-
ticipate and cope with extreme climatic events may also be beneficial in
reducing risk. Cyclones and extreme weather are widely cited as risk-
bearing factors that can limit rural developments efforts in coastal
South Asia (Mottaleb et al., 2016); options for farm insurance can also
be explored to hedge risks.

The farming systems in the central coast of Bangladesh draw at-
tention to the range of socioecological drivers that affect agricultural
intensification pathways and rural livelihoods. Boserup (1965) and

several others recently, including Jayne et al. (2014), Muyanga and
Jayne (2014) and Ricker-Gilbert et al. (2014), have shown the sig-
nificance of population pressure as the main driver of agrarian change.
Surprisingly, our data showed inconsistent effects of population pres-
sure, with positive significance outside polders, and a non-significant
positive trend within them. Our research however underscores the
significance of a host of additional and equally important factors, in-
cluding those associated with climatic risks and tenure insecurity that
negatively affect cropping intensity. Farm households observed in our
data can be seen as either ‘hanging in, stepping up, or out’ of farming as a
primary livelihood strategy (cf. Dorward et al., 2009). Such dynamics
have been measured in sub-Saharan Africa (Tittonell, 2014) but not
previously in South Asia. Increasing importance of off-farm income
(remittances and off-farm employment), particularly for small and
marginally sized farms can be seen as ‘stepping out’ of farming. Con-
versely, 12% and 22% of farms outside and within polders, respectively,
tended to continuously fallow land during the winter between 2005 and
2015. This indicates a ‘hanging in’ strategy for farms less reliant on off-
farm income. Increasing income from intensified cropping is likely to
require considerable changes and inclusion of high value crops sup-
ported by requisite irrigation infrastructure, market access, and sup-
portive policies (Krupnik et al., 2017). Although sufficiently robust to
detect the abovementioned trends, our approach may however be to
some extent be sensitive to difficulties encountered when farmers at-
tempt to recall information during surveys. These risks were however
mitigated in our study through cross-validation with secondary sources
and confirmation of observed trends through follow-up focus groups.

According to Singh (2002) farming systems in the coastal region of
South Asia are solely represented by ‘coastal artisanal fishing mixed
farming systems’ comprising of mixed systems of rice, pulses, livestock
and aquaculture. We therefore consider that our data and sample ex-
emplifies the agrarian change in mixed rice-livestock-aquaculture sys-
tems typical for much of the coastal areas in South Asia, including
Eastern parts of India, Bangladesh and Sri Lanka (Dixon et al., 2001). As
a result, the findings of this study are likely most applicable to the
above locations than other parts of South Asia. This is due to the
comparable agro-climate and similarities with regard to agricultural
practices, demographics, and other socioecological factors.

6. Conclusions and implications

This study aimed to elucidate farm change trajectories and likely
factors/drivers influencing changes in the farming systems of
Bangladesh's central coast using a novel systems analysis approach. We
presented a new framework for analyzing farm trajectories using long-
term panel data. While we adopted both fixed and random effects
models similar to Baltagi (2008), our approach was unique in that we
employed data dimensionality reduction techniques, hierarchically
clustered farm typology analysis, and examined how they changed over
time. We also extracted the underlying latent factors that helped ex-
plain what drives change over time using panel data modelling. The
conceptual model and the analysis provided here illustrate how it is
meaningful to consider a wide range of socioecological system prop-
erties potentially influencing agricultural intensification, rather than
singling out macro-drivers such as population pressure as the primary
metric of agrarian change and intensification.

Our approach, which can be adapted to other farming systems and
geographies, showed that coastal farming systems exhibit farm type
dynamics that are spatially and temporally diverse. With several so-
cioecological drivers as key influencers of change, farming systems in
our study area have gradually moved from heterogeneous, rice-live-
stock based farm types into more homogenous farm types with less li-
vestock and increased emphasis on income generated from pulses,
aquaculture and off-farm employment. Evidence also suggests that farm
typological diversity has decreased within and outside of polders.
Marginal- and small-sized farms now dominate compared to a more
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diverse mix of marginal to large farm types twenty years before. We
have shown the influence of both micro- and meso-level factors in ad-
dition to macro-level drivers (e.g. population and cyclone intensity) in
driving changes in cropping intensity. The inundation class to which
farmland belongs had a positive influence on cropping intensities of the
studied areas, reinforcing the requirement for both post-monsoon field
drainage and clearing existing drainage canals to facilitate winter
season cropping. Finally, the environmental risk posed by cyclones had
a negative influence on both cropping intensities and off-farm income
activities in the area.

These topics, however, have not been adequately dealt with through
policy, which has instead focused on promoting boro rice cultivation.
Our data clearly indicate that this approach is less appealing for
farmers. Rather than focusing on boro rice cultivation in the winter
season, the development of stress tolerant mungbean varieties and ex-
tension support to improve nutrient management may be beneficial,
alongside efforts to improve in-field drainage to facilitate early winter
season land preparation. Setting these issues aside, pathways to cata-
lyze intensification of these systems are also likely require efforts to
ameliorate environmental risks posed by extreme weather, policy to
improve sharecropping arrangements and land tenure security, along-
side farming systems re-design that incorporates household's develop-
ment aspirations and the attributes affecting their crop choices.
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