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Abstract: Remote sensing offers a low-cost method for developing spatially continuous crop
production statistics across large areas and through time. Nevertheless, it has been difficult to
characterize the production of individual smallholder farms, given that the land-holding size in most
areas of South Asia (<2 ha) is smaller than the spatial resolution of most freely available satellite
imagery, like Landsat and MODIS. In addition, existing methods to map yield require field-level
data to develop and parameterize predictive algorithms that translate satellite vegetation indices to
yield, yet these data are costly or difficult to obtain in many smallholder systems. To overcome these
challenges, this study explores two issues. First, we employ new high spatial (2 m) and temporal
(bi-weekly) resolution micro-satellite SkySat data to map sowing dates and yields of smallholder
wheat fields in Bihar, India in the 2014–2015 and 2015–2016 growing seasons. Second, we compare how
well we predict sowing date and yield when using ground data, like crop cuts and self-reports, versus
using crop models, which require no on-the-ground data, to develop and parameterize prediction
models. Overall, sow dates were predicted well (R2 = 0.41 in 2014–2015 and R2 = 0.62 in 2015–2016),
particularly when using models that were parameterized using self-report sow dates collected close
to the time of planting and when using imagery that spanned the entire growing season. We were
also able to map yields fairly well (R2 = 0.27 in 2014–2015 and R2 = 0.33 in 2015–2016), with crop
cut parameterized models resulting in the highest accuracies. While less accurate, we were able to
capture the large range in sow dates and yields across farms when using models parameterized with
crop model data and these estimates were able to detect known relationships between management
factors (e.g., sow date, fertilizer, and irrigation) and yield. While these results are specific to our
study site in India, it is likely that the methods employed and the lessons learned are applicable
to smallholder systems more generally across the globe. This is of particular interest given that
similar high spatio-temporal resolution micro-satellite data will become increasingly available in the
coming years.
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1. Background and Rationale

Food security will become increasingly challenged over the upcoming decades by climate
change [1,2], natural resource degradation [3], and a burgeoning global population [4]. Smallholder
farming systems are of particular concern given that farmers often do not have access to the inputs and
technologies necessary for high-production agriculture [5], and many of these systems are distributed
across the tropics, where negative climate change impacts are expected to be greatest [2,6]. One
way to enhance food security is to examine production levels, and identify factors associated with
existing yield gaps. Remote sensing offers a low-cost way to obtain crop production statistics across
large spatial and temporal scales [7,8]. However, to date it has been difficult to map the production
of smallholder farms, given that the size of an individual field (<2 ha) is typically smaller than the
spatial resolution of most freely-available satellite imagery (e.g., 30 m Landsat, 250 m MODIS; [9,10]).
While these satellite data can be used to map aggregate-level yield statistics, at the scale of multiple
fields or coarser, having the ability to map individual smallholder farms is important given the large
heterogeneity in production within and across fields. Generating field-level statistics would result in a
better understanding of the causes of yield gaps, and the ability to identify low-performing fields that
can be targeted with yield-enhancing strategies.

There are several challenges that exist for mapping field-level production of smallholder farms.
First, while high-resolution satellite imagery (e.g., <5 m, IKONOS, WorldView 2, and Quickbird)
overcomes the issue of mixed pixels, the use of these products to map production across large
areas has been limited. This is because these high-resolution data are costly to acquire (typically
$15–$50 per square kilometer), and thus are typically used at low temporal frequency (e.g., [11,12]).
However, previous studies have shown that the accuracy of mapping yields can be improved by
using multiple images throughout a growing season [13–16]. Over the last decade, new low-cost
microsatellites (e.g., Terra Bella’s SkySat, Planet’s PlanetScope) have been developed and deployed
that allow for the collection of both high spatial (<5 m) and temporal resolution (<2 weeks) imagery at
lower cost. These microsatellites offer the opportunity to obtain multiple measures of the same field
throughout a single growing season, which should increase the ability to accurately map field-level
crop production statistics. Thus, we will examine how well field-level production data can be estimated
using new, low cost, high spatio-temporal datasets.

A second challenge is that most existing methods to map crop production require field-level
yield data to develop and calibrate models that translate satellite vegetation indices to yield. These
production statistics are typically collected via crop cuts, where individual harvests are weighed, or
social surveys, where farmers are interviewed about the amount of production from an individual
field [17]. While previous studies have accurately mapped field-level yield using on-the-ground data
for calibration [18–20], these data are very time and cost intensive to collect and often do not exist in
many smallholder systems across the globe [21]. Furthermore, even if they do exist, they are typically
only collected over small spatial and temporal scales, making it difficult to extrapolate any calibrated
algorithms to broader regions or across multiple years. To overcome these issues, a new method,
SCYM (the scalable crop yield mapper), has been developed that uses crop models to simulate the
necessary on-the-ground data used to train remote sensing algorithms that predict yield [16]. In this
study, we will develop and compare models that use typical on-the-ground training datasets (e.g., crop
cuts and social surveys) and the new SCYM approach that requires no calibration data. Understanding
how well these different sources of data can be used to parameterize and calibrate remote sensing
algorithms would be beneficial as it would help identify possible data sources that are both low cost
and provide high predictive accuracy.

2. Objectives

This study employs new high spatio-temporal resolution micro-satellite SkySat data to map
statistics of smallholder (<0.3 ha) wheat fields in Bihar, India. There is a large amount of heterogeneity
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in production and management across fields in the region, and farms on average attain 50% of potential
production [22]. We aim to answer the following two questions in this study:

(1) How well can crop characteristics, like sow date and yield, be mapped for individual smallholder
fields using new low cost, high spatio-temporal microsatellite data? How do these results compare
to those produced using coarser Landsat imagery?

(2) How do lower-cost methods to obtain parameterization data, like crop models, compare to
typically used parameterization data, like crop cuts or self-reports?

This study is one of the first to explore the use of new micro-satellite data for mapping smallholder
farm characteristics. While the analyses presented in this paper are specific to our study site in India,
it is likely that the methods employed and the lessons learned from this study are generally applicable
to smallholder systems across the globe.

3. Study Area

We obtained high-resolution SkySat imagery for an 8 × 16 km2 region in Arrah district, Bihar,
India (central coordinates: 25.47◦N, 84.52◦E) for the 2014–2015 and 2015–2016 winter growing seasons
(Figure 1). This region is predominantly composed of smallholder agriculture, with farms covering
over 80% of land area. There are three agricultural growing seasons in this region: the monsoon (kharif)
season when a majority of farmers plant rice, the winter (rabi) season when most farmers plant wheat,
and the summer (garmi) season when most fields remain fallow. We specifically focused this study on
the winter season, which spans from early November to early April. There is significant heterogeneity
in management practices, which leads to large variation in wheat yields across fields. Most farmers
apply phosphate and nitrogen fertilizers, like DAP and urea, yet the amount applied varies from 20 kg
to over 100 kg. There is also variation in the number of irrigations applied (typically one to three
times) since irrigation is costly due to expensive diesel pumps. There is also a wide range in sow
dates, spanning from 1 November to early January. Sow date has large impacts on yield, as crops that
are sown late (typically from December onwards) face heat stress during grain filling, which leads to
large reductions in yield [23,24]. Previous studies have shown that higher yields are associated with
optimum sow dates [25,26], higher fertilizer use [27], and increased irrigation use [28,29]. Given the
significant heterogeneity in yields across smallholder farms in this region, this site is ideal to examine
how well micro-satellites can map field-level statistics. It is important to note that a large proportion of
farmers intercrop mustard (varieties Rajendra Rye and RD 1002) with wheat (<10% of the total field),
which potentially may lead to mixed spectral signatures within a given wheat field in our remote
sensing analyses.
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Figure 1. Study region in Arrah district, Bihar, India. The study region extent is highlighted by the
dark blue rectangle. The state boundary of Bihar is highlighted in white.
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4. Approach

We used the following approach to address our two main objectives. First, to understand how
calibration data type affects yield prediction accuracies, we collected crop cut and self-report data
and created crop model data for our study region of interest (Section 5). We then used these data to
develop algorithms that translate satellite vegetation indices to sow date and yield (Section 6.1), and
assessed their accuracy in two ways (Section 6.2). We examined how predicted estimates compared to
observed estimates, and how well yield predictions were able to capture known relationships between
management variables and yield. Second, to identify how well high-resolution micro-satellite data
perform compared to freely-available imagery, we predicted yields using 30 m Landsat imagery as
well as SkySat imagery resampled to 30 m, which allows us to more fairly compare the amount of
prediction accuracy lost due to coarser scale imagery alone (Section 6.3).

5. Data

5.1. SkySat Imagery

During the 2014–2015 growing season, six dates of mostly cloud-free imagery were acquired:
18 February, 11 March, 22 March, 23 March, 28 March, and 6 April. For the 2015–2016 growing season,
five dates of mostly cloud-free imagery were acquired: 21 December, 3 January, 11 February, 16 March,
and 4 April. We did not task specific image dates, and instead Terra Bella collected images depending
on satellite availability, averaging approximately one image every two to three weeks. Imagery was not
obtained during the first half of the wheat growing season in 2014–2015, but spanned the entire growing
season in 2015–2016 (Figure 2). Terra Bella’s SkySat satellites collect optical multi-spectral imagery at
2-m resolution, which includes blue (0.450–0.515 nm), green (0.515–0.595 nm), red (0.605–0.695 nm),
and near infra-red (0.740–0.900 nm) bands.
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Pre-processing of Imagery: Nine separate tiles of imagery were collected for each date across our
study region. There were radiometric differences between tiles collected along different paths by
different detectors, particularly for the 2014–2015 imagery. To smooth these differences, we used
ENVI seamless mosaicking with histogram matching across the entire scene. We did not use seamless
mosaicking for the 2015–2016 imagery as these images were already mosaicked by Terra Bella. While
some seams still remained, their visibility greatly reduced when we converted imagery to vegetation
indices. To convert radiance to surface reflectance, we histogram matched each mosaicked SkySat
image using histograms derived from Landsat surface reflectance imagery following simple approaches
used in previous studies [30,31]. We selected the Landsat image that was closest in date to each of
the SkySat images and subsetted it by the extent of our study region. If there was no Landsat image
acquired within five days of a given SkySat date, we linearly interpolated between the histograms
from the closest Landsat dates before and after the SkySat image was acquired. To geo-reference the
SkySat imagery, we manually geo-referenced 300 locations in one SkySat image (11 March) using point
locations obtained from Google Earth imagery. We then transformed this image using a thin plate spline
and nearest neighbor resampling in QGIS. We automatically geo-referenced the remaining images to
the manually geo-referenced image using image-to-image registration with an affine transformation
in ENVI. Finally, we calculated the green chlorophyll vegetation index (GCVI; Equation (1)) for each
image because previous studies have shown that GCVI has a fairly linear relationship with wheat leaf
area index (LAI; [32]).

GCVI = (NIR/Green) − 1 (1)

Mask: To create a non-agriculture mask, we collected 297 points of different landcover classes
across our SkySat region using i-Tree canopy software (http://www.itreetools.org/canopy), which
relies on visual interpretation of high-resolution Google Earth imagery. We used 200 of these points
as training data within a random forest model that used GCVI from all SkySat images to predict
agriculture versus non-agriculture landcover classes. We validated the mask using the remaining
97 points, and obtained a user’s accuracy of 81.3% and a producer’s accuracy of 93.8% (Table S1). We
did not develop a cloud mask because we used imagery that was mostly cloud free.

5.2. Landsat Imagery

To identify how well we could map smallholder yields and sow dates using SkySat imagery
compared to Landsat imagery, we used Google Earth Engine to download all cloud-free Landsat
Surface Reflectance imagery between 1 December and 15 April for the 2014–2015 and 2015–2016
growing seasons. Seven Landsat 7 and 8 images were available for 2014–2015 and 2015–2016
respectively. For 2014–2015, images were available for 1 February, 9 February, 17 February, 5 March,
13 March, 21 March and 29 March. For 2015–2016, images were available for 26 December, 11 January,
27 January, 12 February, 28 February, 8 March, and 16 March. We calculated GCVI for all images as
previous studies have shown that GCVI has a fairly linear relationship with wheat LAI [32].

5.3. Crop Cut Data

Crop cut data were collected for 50 randomly selected fields across our study region in 2014–2015,
and for 37 fields in 2015–2016. We visited these fields twice during the growing season to obtain
necessary information. During the first visit in November, we collected GPS points at the four corners
of one field for each farmer. We also asked farmers to report the sow date and wheat variety used
in each field. During the second visit, which occurred at the time of harvest in April, we asked the
same farmers questions about inputs into the system, including amount and type of fertilizer applied
and number of irrigations used. We additionally recorded how heavily the field was lodged (defined
as crops that have fallen over) on a scale of 1 (no lodging) to 10 (heavily lodged). In 2014–2015, we
conducted crop cuts by selecting three 2 × 1 m2 plots within each field, harvesting the crop from

http://www.itreetools.org/canopy
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these sub-plots, and weighing the crop (biomass) and grain (yield) in the field. In 2015–2016, our team
collected a total of twelve different crop cuts from each field because we were conducting a fertilizer
experiment and had four sub-plot treatments in which we collected three crop cuts each. To calculate
mean yield of a field, we averaged the yield values from all 2 × 1 m2 crop cut plots within each field.
We weighted lodged and unlodged plots equally because yields from these plots were fairly similar
within a field. To link this crop cut information directly with SkySat imagery, we created polygons
using the GPS locations of field boundaries collected for each field. When necessary, we manually
adjusted each field’s polygon to ensure that it directly matched visible field boundaries in both SkySat
and high-resolution Google Earth imagery.

5.4. Social Survey Self-Report Data

Social survey data were collected for 52 farmers in 2014–2015 and 29 farmers in 2015–2016 in
mid-April, after wheat harvests had taken place. These farmers were independent of the ones that we
visited to collect crop cut data. For each of these farmers, we visited one of his/her wheat fields in
2014–2015, conducted the survey while in the field, and collected GPS boundaries of each field. For the
2015–2016 season, we called farmers for whom we had collected field boundary data from during the
previous year, and conducted the survey over the phone. We asked farmers to report management
strategies used in the field, including amount of fertilizer and irrigation used, wheat cultivar planted,
and sow date. Finally, we asked the farmers to report the wheat yield of each field. All self-report yield
measures were converted to kilograms per hectare to ensure these data were comparable to the crop
cut data.

5.5. Crop Model Data

Previous work has shown that crop model outputs may be used to develop and calibrate models
that translate satellite vegetation indices to yield [16]. We use similar methods to those derived in Lobell
et al. (2015) to test whether this approach, called SCYM, may accurately map the yields of smallholder
farms. With this method, a suite of crop models are run that encompass variation in management across
the study region, and then daily LAI outputs from the crop models are converted into daily vegetation
indices (VIs) using field-tested and calibrated equations that relate VIs to crop LAI (e.g., [32]). We then
create linear models where we regress simulated yield on simulated VIs for the dates that we have
satellite imagery. For this study, we used the APSIM wheat crop model [33], which we parameterized
using a range of management variables obtained through our surveys with farmers and from previous
literature (specific parameters and references are listed in Table S2) as well as crop parameters for the
most prevalent wheat variety, PBW-343 [34,35]. We also input daily weather data, including radiation
as well as minimum and maximum temperature from NASA POWER (Prediction of Worldwide
Energy Resource; http://power.larc.nasa.gov) and rainfall from CHIRPS (Climate Hazards Group
InfraRed Precipitation with Station data; http://chg.geog.ucsb.edu/data/chirps/). We compared
NASA POWER estimates of temperature with station data, and found that NASA POWER mean
temperature is typically a few degrees warmer. Thus, we used the mean of MODIS LST daytime and
nighttime temperature, which has been shown to accurately measure mean temperature [36,37] to
correct the mean of NASA POWER temperature estimates. We converted daily wheat LAI simulations
to GCVI using Equation (2), which was derived from subfield-level estimates [32].

LAI = −0.003 × GCVI2 + 0.64 × GCVI − 0.37 (2)

6. Methods

We calculated wheat yield from SkySat imagery using three different datasets to parameterize
linear models. The first method used crop cut data, the second method used self-report data, and the
third method used outputs from our crop model simulations. In the case of sow date, only two types
of data were used, self-reports and outputs from crop models. However, since there was temporal

http://power.larc.nasa.gov
http://chg.geog.ucsb.edu/data/chirps/
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variation in when the self-reports were collected, with self-report sow date collected close to the timing
of planting in our crop cut survey but at the end of the growing season in the self-report survey, we
parameterized two separate models using these two datasets. The difference in performance between
these two datasets can help identify whether the timing of surveys has an effect on self-report accuracy.
Model parameterization and validation are described below.

6.1. Model Parameterization

We developed and calibrated linear models because the relationship between our outcome
variables of interest (sow date and yield) and GCVI for our crop cut plots was predominantly linear
(Figures S1 and S2). We also observed that GCVI and yield were not linearly related in fields that
were heavily lodged, likely because these plots had low yields regardless of early season GCVI.
We thus removed fields that were heavily lodged (lodging score > 6) from our analyses since we would
not expect a relationship between early season GCVI and final yield. To reduce the chance of model
overfitting, we examined the correlation between GCVI across all dates (Table S3). Since 22 March
and 23 March in the 2014–2015 imagery were highly correlated (R > 0.92), we omit 23 March from
all analyses. We also examined the phenologies of GCVI through time for each of our crop cut fields
(Figure S3), and since early sown and higher yielding plots had higher maximum GCVI values than
late sown and low yielding plots, we consider the maximum GCVI value attained across all SkySat
image dates as a predictor in our models.

We developed linear models that used all possible image dates. This is because our analyses
suggested that models that used all image dates had the highest R2 for both yield and sow date
predictions (see Results, Section 7). However, for crop model parameterized models, we restricted
our analysis to only include images before mid-March. This is because wheat phenologies in our crop
model simulations matured and senesced one month earlier than observed phenologies, resulting
in a mismatch between our observed and crop model phenologies after mid-March. This mismatch
has been well documented in previous studies [35], especially for late sown wheat in north-western
India, and this has been identified as a weakness in the APSIM model and an important area for future
research [38].

6.2. Validation of Models

We validated sow date and yield estimates for the crop cut, self-report, and crop model
parameterized models in two ways. First, we applied coefficient values derived from our linear
models to the GCVIs associated with the crop cut polygons. We used the crop cut data for validation
because we believe these data to be our most accurate measure for yields. We also used the sow date
data collected in the crop cut survey as validation for sow dates, as we hypothesize that farmers will
report sow date more accurately closer to the timing of planting. We then examined R2 and RMSE
between predicted sow dates and yields from each of the best models and the observed sow dates and
yields from our crop cut datasets.

Our second test examined whether these models could produce yield estimates that can detect
known signals between management variables and yield. Specifically, we examined the relationship
between predicted yields and reported sow date, amount of fertilizer used (urea fertilizers), and
number of irrigations applied. The closer these relationships matched associations observed between
our crop cut yields and management variables, the better the satellite yield estimates were thought to
be. We were unable to examine the relationship between fertilizer and yield in the 2015–2016 dataset
because fertilizer was applied equally to all farms due to our fertilizer experiment, and therefore there
was no variation in fertilizer to examine.

6.3. Comparison of SkySat and Landsat Imagery

To better identify the additional information gained from SkySat imagery compared to
freely-available, coarser Landsat data, we conducted two additional analyses. First, we resampled
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SkySat imagery to 30 m to match the resolution of Landsat imagery, and redeveloped coefficient values
for linear models that translate satellite vegetation indices to sow date or yield. By resampling SkySat
data to 30 m, we specifically examine the predictive ability that is lost with coarser scale imagery.
Second, we redeveloped coefficient values for linear models using all available cloud-free Landsat
images within the 2014–2015 and 2015–2016 growing seasons. This analysis both examines the effect of
coarser scale imagery as well as the effect of having increased temporal frequency of imagery on our
sow date and yield estimates. This is because we had seven images available for both the 2014–2015
and 2015–2016 growing seasons compared to only five images available for SkySat in each season.
For these analyses, we only develop models that use crop cut data as calibration data since this dataset
was shown to result in the highest prediction accuracies. We did not examine how well Sentinel-2,
a new freely available satellite product at 10 m resolution, performed because no data were available
for 2014–2015 as this was prior to the satellite’s launch and only two cloud-free images were available
for the 2015–2016 growing season.

7. Results

7.1. Prediction Accuracy

7.1.1. Sow Date Models

We use all available image dates for analyses because we find that prediction accuracies improve
using all dates (Figure 3). For sow date, we compared predicted values derived from the crop cut,
self-report, and crop model parameterized models with observed self-reports from the crop cut dataset
(Figures 4 and 5). For both years, we find that the crop cut parameterized model performs best,
with an R2 of 0.41 and an RMSE of 12.41 for the 2014–2015 season and an R2 of 0.62 and an RMSE
of 6.68 for the 2015–2016 season (Figures 4A and 5A). This suggests that parameterizing models using
self-report sow date from early in the growing season can lead to accurate predictions of sow date
using satellite imagery. Considering the model parameterized with end-of-season self-report data
(Figures 4B and 5B), the model does less well, with an R2 of 0.37 and RMSE of 14.57 in 2014–2015
and an R2 of 0.0 and RMSE of 13.96 in 2015–2016. Most notably, our end-of-season self-report model
rarely predicts sow dates before 30 November. This may be because no farmers report early sow dates
(before 15 November) in the end-of-season self-report dataset. Finally, the models derived from crop
models (Figures 4C and 5C) perform worse than models parameterized with early-season self-reports
and comparably to or better than models parameterized with end-of-season self-reports. The crop
model parameterized algorithm resulted in an R2 of 0.27 and RMSE of 25.56 in 2014–2015 and an R2

of 0.40 and RMSE of 10.38 in 2015–2016.
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Figure 3. Change in R2 by adding an additional image date for the 2015–2016 study season using crop
cuts as calibration data. Each image date was added from most to least important based on variable
importance measures from random forest analyses.
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Figure 4. Sow date and yield prediction accuracies using 2014–2015 imagery. Predicted versus observed
sow dates using: the crop cut parameterized model (A); the self-report parameterized model (B); and
the crop model parameterized model (C). Predicted versus observed yields using: the crop cut
parameterized model (D); the self-report parameterized model (E); and the crop model parameterized
model (F). The one to one line is highlighted with a dashed line, and R2 and RMSE for each analysis
are reported.
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Figure 5. Sow date and yield prediction accuracies using 2015–2016 imagery. Predicted versus observed
sow dates using: the crop cut parameterized model (A); the self-report parameterized model (B); and
the crop model parameterized model (C). Predicted versus observed yields using: the crop cut
parameterized model (D); the self-report parameterized model (E); and the crop model parameterized
model (F). The one to one line is highlighted with a dashed line, and R2 and RMSE for each analysis
are reported.
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7.1.2. Yield Models

We find that the model that uses crop cut data to parameterize a linear model most accurately
maps field-level yield using satellite imagery (Figures 4D and 5D, R2 = 0.27, RMSE = 606.46 kg/ha
in 2014–2015 and R2 = 0.33, RMSE = 557.78 kg/ha in 2015–2016). In 2014–2015, where we only had
access to late season imagery, this model does not predict many values above 3200 kg/ha, even though
yields as high as 5000 kg/ha were observed. However, in 2015–2016 where we had access to imagery
throughout the growing season, we were able to accurately predict higher yielding fields. The model
parameterized using self-report yield data predicted yields less well but still explained a fair amount of
variation, with an R2 of 0.13 and RMSE of 738.47 in 2014–2015 and an R2 of 0.06 and RMSE of 2532.35
in 2015–2016 (Figures 4E and 5E). Finally, the crop model parameterized linear model performed better
than the self-report model but worse than the crop cut model, with an R2 of 0.15 and RMSE of 1296.12
in 2014–2015 and an R2 of 0.27 and RMSE of 783.99 in 2015–2016 (Figures 4F and 5F). This method
appears to show variance in yield almost as well as our crop cut calibrated analyses in 2015–2016,
when we have imagery throughout the growing season.

7.2. Ability to Capture Yield Responses to Management

Previous research has shown that wheat yields are strongly associated with management factors,
including sow date [25,26], fertilizer inputs [27], and irrigation used [28,29]. Thus, one test of how well
satellite data estimate yield is to see whether we can capture known relationships between management
factors and predicted yields. To quantify the relationship between management factors and yield, we
compared sow date, fertilizer input, and number of irrigations with mean yields measured using crop
cut data. Consistent with prior work, we find that yield is positively associated with earlier sow date
(R2 of approximately 0.30), increased fertilizer use (R2 of approximately 0.20), and increased number
of irrigations (R2 of approximately 0.25; Figures 6A and 7A). We then compared yield predictions from
satellite data with reported management variables to identify whether these relationships could be
similarly captured. We find that the crop cut parameterized model does best in capturing management
effects on yield (Figures 6B and 7B), except for in the case of sow date where self-report models do
better in 2014–2015 (Figure 6C) and crop model parameterized models do best in 2015–2016 (Figure 7D).
Crop cut parameterized estimates capture the stronger effects of sow date and irrigation well, but
have a weak association between fertilizer and yield. Considering the self-report models, estimated
yields are able to capture the effect of sow date well, and the effect of fertilizer and irrigation weakly
(Figures 6C and 7C). This may be because this model resulted in a large amount of scatter around the
one-to-one line for high yields (e.g., Figure 4E), which may make it difficult to capture the weaker
effects of fertilizer and irrigation that rely on accurate prediction of high yields. Finally, the crop
model estimated yield data were able to capture the effect of sow date on yields, but were unable
to capture the effect of fertilizers and could only weakly capture the effects of irrigation on yield
(Figures 6D and 7D).

7.3. Comparison of SkySat and Landsat Imagery

We conducted two analyses to examine the value that SkySat data may add to sow date and
yield predictions compared to freely-available, coarser scale Landsat data. When conducting this
comparison, we only developed models that used crop cut data for calibration, as our previous results
suggest that these calibration data result in the highest prediction accuracies. First, when we resampled
existing SkySat data to 30 m resolution, we find that our ability to predict sow date and yield decreases,
with R2 dropping from 0.41 to 0.24 for sow date (Figure 8A) and 0.27 to 0.25 for yield in 2014–2015
(Figure 8B), and from 0.62 to 0.50 for sow date (Figure 8C) and 0.33 to 0.29 (Figure 8D) for yield in
2015–2016. In our second analyses, where we used all cloud-free Landsat imagery to develop sow date
and yield prediction algorithms, we find that our ability to predict sow date and yield improves, likely
due to the increased temporal frequency of available imagery. In 2014–2015, R2 increased from 0.41 to
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0.47 for sow date (Figure 8A) and 0.27 to 0.52 for yield (Figure 8B), and in 2015–2016 R2 decreased from
0.62 to 0.56 for sow date (Figure 8C) and increased from 0.33 to 0.42 for yield (Figure 8D). To further
examine whether this improvement in accuracy was due to increased temporal image availability or
another factor related to the Landsat data, we conducted similar analyses where we restricted which
Landsat image dates we used to only those that were close in date to our available SkySat imagery.
With this analysis, we find that our ability to predict sow date and yield is more comparable to the
accuracies achieved using SkySat imagery (R2 of 0.33 and 0.53 for sow date in 2014–2015 and 2015–2016,
respectively; R2 of 0.28 and 0.40 for yield in 2014–2015 and 2015–2016, respectively). While Landsat
analyses outperformed SkySat, likely due to increased temporal image availability, it is important to
note that SkySat better allows one to map within and across field heterogeneity compared to Landsat
due to its higher spatial resolution (Figure 9).
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Figure 6. The relationship between yields and sow date, urea fertilizer added, and number of
irrigations for 2014–2015 data: (A) known relationships between these management variables and
yield as measured using the crop cut yield data collected in the field; (B) relationships with yield
estimates using the crop cut parameterized model; (C) relationships with yield estimates using the
self-report model; and (D) relationships with yield estimates using the crop model parameterized model.
R2 between management variables and yield are highlighted in each graph.
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Figure 7. The relationship between yields, sow date, and urea fertilizer added for 2015–2016 data:
(A) known relationships between these management variables and yield as measured using the crop cut
yield data collected in the field; (B) relationships with yield estimates using the crop cut parameterized
model; (C) relationships with yield estimates using the self-report model; and (D) relationships with
yield estimates using the crop model parameterized model. R2 between management variables and
yield are highlighted in each graph.
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Figure 8. R2 for all-date models predicting sow date (A) and yield (B) in 2014–2015 and sow date
(C) and yield (D) in 2015–2016 using either the original SkySat data (Sky 2 m), SkySat data resampled
to 30 m (Sky 30 m), or Landsat data (Lan 30 m). Five images are used for all SkySat analyses, while
seven are used for Landsat analyses.
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Figure 9. Predicted sow date using SkySat (A) and Landsat (B) as well as predicted yields using
SkySat (C) and Landsat (D). All predictions were done using crop cut data for calibration. SkySat
predictions allow one to examine across and within field variability, which cannot be observed using
Landsat predictions.
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8. Discussion

This study adds to the growing body of literature that uses satellite imagery to monitor crop
production of smallholder systems. This work is one of the first to examine how well new micro-satellite
data can be used to map characteristics of individual fields, and assesses what types of calibration data
can lead to the highest accuracies at low cost. Overall, we find that we were able to map sow date with
high accuracies, particularly when using models that were parameterized with self-report sow dates
collected close to the time of planting. While less accurate, we were able to capture the large range
in sow dates across farms when using models parameterized with crop model simulations. We were
also able to map yields fairly well, though the accuracy of yield predictions was not as high as that
of sow date. When estimating yields, our models did best when parameterized with crop cut data.
However, yields predicted using crop model simulations did almost as well in 2015–2016, when we
had access to imagery throughout the growing season. These results suggest that new high-spatio
temporal micro-satellite data can be used to map field-level characteristics of smallholder farms, but
the accuracy of these estimates varies based on the type of data used to parameterize models that
translate satellite vegetation indices to yield.

When deciding which data to use for calibration, it is important to consider not only prediction
accuracy but also how easy it is to access training data given collection costs and data availability. While
we find that models parameterized with crop cut data do best, it may be worth considering alternate
lower-cost approaches to obtain training data. Considering sow date, models that were parameterized
using crop models did almost as well as models that used self-reports (Figures 4C and 5C). They were
able to broadly capture the difference between early and late planted fields, and map the heterogeneity
in sow date across farms. It may thus not be worth the cost and time needed to collect self-report sow
date data since crop models that require no on-the-ground data do relatively well. Considering yield,
while the crop cut parameterized model performed best, models parameterized with crop models
were able to broadly distinguish between low versus high yielding plots (Figures 4E and 5E) and
did almost as well as crop cut calibrated models in 2015–2016 when we had imagery throughout the
season. These models were able to capture the strongest associations between management factors,
like sow date, and yield (Figures 6 and 7). Interestingly, our social survey calibrated models performed
worst on all measures of accuracy, though they were better in predicting sow date than yield. Our
results suggest that models parameterized with lower cost data, like crop model simulations, may
produce yield and sow date estimates that are accurate enough depending on the desired purpose of
the study. For example, if one aims to distinguish between low versus high yielding plots, or to detect
signals with large effect sizes, then yield estimates produced using lower-cost training data like crop
models may do well.

While we were able to distinguish between low versus high yielding fields across all of our
models, predictions were often biased. In the case of crop cut calibrated models, there is severe
under-prediction of yields for high yielding fields (>3200 kg/ha) when we only had imagery towards
the end of the growing season. This may have occurred because the linear relationship between
GCVI and yield was weaker at the end of the growing season for fields with the highest yields
(Figures S1 and S2), potentially due to mixed spectral signatures caused by intercropping wheat
with mustard. Having access to imagery throughout the growing season reduced this problem,
likely because the relationship between GCVI and yield is more linear for early season imagery.
Yields were over-estimated considering self-report data, averaging 2000 kg/ha greater than observed
yields in 2015–2016. This may be because self-report data were collected over the phone in this
year, and since most farmers in this region own multiple plots, it is possible that farmers were
less precise in giving estimates of the specific field for which we had GPS boundaries. There was
over-prediction of yields considering crop models in 2014–2015, with predicted yields that were
often 1000 kg/ha greater than observed yields. This is likely because of a mismatch between
observed phenologies in our SkySat imagery versus crop model phenologies; crops matured and
senesced about one month earlier in crop model simulations. Because of this, the highest prediction
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accuracies were obtained when using early season imagery (before March), when the observed
and simulated phenologies were more closely aligned. Not having access to early season imagery
in 2014–2015 likely led to greater inaccuracies in our yield estimates for that year. Future work should
identify ways to better match simulated phenologies with observed phenologies for wheat in this
region. Overall, while all predictions had some biases, they may not be problematic if one is more
interested in yield variability across plots than knowing the absolute yield of a field.

We were also interested in identifying whether our prediction accuracy improved with increased
temporal frequency of imagery. We find that our models improve with access to satellite imagery
throughout the growing season (Figure 5). This is particularly true for sow date where R2 improved
from 0.41 to 0.62 when we had access to early season imagery. While yield estimates did not greatly
improve with increased access to imagery, we were better able to capture the observed range in
yields when we used early season imagery. Finally, our crop model calibrated algorithms performed
significantly better when using early season imagery, with R2 for both sow date and yield increasing
by approximately 0.15. It is possible that our ability to predict both sow date and yield would improve
even further if we had increased access to imagery throughout the growing season, with more than one
image per month. This is suggested by previous studies that have found high accuracies in predicting
yield with multi-temporal imagery that spans the length of the growing season [14–16] as well as
our Landsat analyses (Figure 8). These previous studies were able to predict yields with R2 ranging
from 0.21 to 0.64 (e.g., [14–16]), and our results are thus comparable to accuracies achieved in previous
studies using other satellite data and on-the-ground calibration data. As more high-resolution satellite
data become available, future work will examine how much prediction accuracies further improve
with near weekly or bi-weekly imagery.

Considering the relative benefit of using high-resolution SkySat imagery compared to
freely-available, coarser Landsat imagery, we find that accuracies for predicting sow date and yield
decrease when SkySat imagery is resampled to match the spatial resolution of Landsat (Figure 8).
This suggests that high-resolution imagery results in more accurate field-level predictions, likely by
reducing the effect of mixed pixels caused by small field sizes and heterogeneous management across
farms. We find that we produce more accurate yield estimates but comparable sow date estimates to
those produced using SkySat imagery when we use all-available Landsat imagery (Figure 8). It is likely
these improved accuracies are driven by the increased temporal frequency of Landsat, as seven Landat
images were available versus five for SkySat. Despite these improved accuracies in mapping field-level
yields, a significant amount of spatial information is lost when using coarser Landsat imagery. With
high-resolution SkySat data, we captured within field heterogeneity, which is often as large as across
field variation (Figure 9). These tradeoffs suggest that whether one should use micro-satellite data or
current, freely-available imagery depends on the goals of the study. Landsat currently offers better
temporal coverage, and our results suggest that this increased temporal frequency is particularly
important for mapping field-level yields. However, SkySat imagery offer the ability to examine within
and across field yield variation that is not possible using coarser resolution Landsat data.

Future work should further explore several uncertainties in this study. First, it is unclear how
widely the algorithms that we developed to map yield and sow date can be applied. For example,
future work should examine whether the same models can be used across larger spatial scales and
across multiple years. Furthermore, we were unable to partition the amount of predictive error that
was due to radiometric correction issues with SkySat; it is possible that future studies may be able
to achieve higher predictive accuracies once micro-satellite data are better radiometrically calibrated
and mosaicked.

9. Conclusions

This study shows that high spatio-temporal micro-satellite data can be used to map individual
field-level characteristics of smallholder farms with significant accuracy, capturing roughly one-half
and one-third of the variation in field-measured sow date and yields, respectively, when parameterized
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with field measures. Considering calibration datasets, this study highlights that while the best
prediction accuracies can be achieved using on-the-ground crop cut data, we are able to produce
accurate estimates of yield using lower cost parameterization data, like crop model simulations
that require no on-the-ground data. While yield estimates produced using these lower-cost data
have reduced prediction accuracy compared to crop cut models, they are still able to differentiate
between low versus high yield fields and are able to capture the strongest known relationships
between management variables and yield. This suggests that crop model simulations and the SCYM
approach [16] may be a viable way to map agricultural production with little to no ground data, even
in heterogeneous smallholder systems. Finally, we find that accuracies for predicting smallholder sow
date and yield can be improved when using imagery that spans the entire growing season, and likely
will be improved further as the temporal frequency of imagery increases. This study has uniquely
added to the growing body of literature that aims to map crop production statistics of smallholder
farms. Specifically, this study is one of the first to evaluate how well new micro-satellite data can
be used to map smallholder characteristics, and it also examines what type of calibration data can
produce accurate results at low cost. The results of this study suggest that new micro-satellite data are
a viable product to map field-level farm characteristics, and their utility will only improve as these
satellites develop increased temporal frequency throughout the growing season.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/10/860/s1,
Table S1: Mask classification accuracy; Table S2: Crop model parameters used to run APSIM models; Table S3:
Correlation of mean GCVIs; Figure S1: Scatterplots of GCVI versus sow date in 2014–2015; Figure S2: Scatterplots
of GCVI versus sow date in 2015–2016; Figure S3: GCVI phenologies for early vs. late sown plots and low vs. high
yield plots.
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