Stempedia Model: Fighting Blight in Lentil

Posted on CSISA Success Story, Nepal-news, News - Homepage, News & Announcements, Uncategorized, February 7, 2019

Scientists, in collaboration with CSISA, help farmers practice integrated disease management with the help of the weather-based Stempedia model.

Stemphylium blight is one of the most damaging diseases that plagues lentil fields in South Asia, causing plants to shed leaves and loose twigs, ultimately leading to grain loss. In severe cases, yield losses as high as 90% have been reported in Bangladesh and other countries. Lentil production is an integral part of many nutrition-sensitive farming systems in the region, so Stemphylium blight is a threat to smallholder farmers’ livelihoods in Bangladesh, India and Nepal.

Disease severity is conditioned by cloudy weather, relative humidity, and temperature and precipitation regimes. It may vary between locations within a growing season and also between seasons within a location. If foliar fungicides are carefully used in combination with a suite of integrated pest management practices, the disease can be controlled. However, farmers often find it difficult to determine the timing, frequency and amount of fungicide they should use. This requires special consideration because fungicides can affect yield and have negative environmental consequences if used improperly. The Stempedia model, a weather-based model used to assess the risks of Stemphylium blight disease, is being processed to help farmers decide when and how much fungicide to use to appropriately control Stemphylium blight.

The Cereal Systems Initiative for South Asia (CSISA) has entered into a collaboration with the Climate Services for Resilient Development (CSRD) project, both supported by USAID/Washington, to enable national scientists and extension officers in Bangladesh, India and Nepal to test the Stempedia model and assess the regional and seasonal risks of Stemphylium blight occurring. Partner scientists and officers collect data in farmers’ fields, assess the severity of the problem and pass those data to CSRD for Stempedia model testing and calibration. The huge task of collecting field data would have been impossible without the collaboration between CSISA and CSRD.
CSISA and CSRD mobilized national partners and collected data on the incidence and severity of Stemphylium blight during the 2017-18 growing season from 480 farmers’ fields in three countries: in Bangladesh with support from the Department of Agricultural Extension, in India with the help of Bihar Agricultural University, and in Nepal with the support of Nepal Agricultural Research Council’s National Grain Legume Research Program.

The status of Stemphylium blight was assessed before harvest and the results indicated that it was more prevalent in the Bangladesh and Nepal sites than in the India sites. Relevant weather data, available from five sites, were used to run the Stempedia model, and preliminary results showed that the model had the potential to mimic the status of the disease observed in the fields.

The Stempedia model is currently being calibrated to achieve prediction accuracy, and more data from a similar number of fields in the three countries are being collected in the 2018-19 growing season for comprehensive model refinement. The ultimate goal is to set up the model to analyze weather forecasts and train national extension partners to use Stempedia so they can better advise farmers.

Speaking about the Stempedia model, Dr. Anurag Kumar of CSISA, Bihar, India, said, “Farmers in Bihar had no clue how to control the disease and had been blindly using chemicals for controlling Stemphylium blight. This model will guide farmers on when to use fungicides or whether to use them at all.” Once it is successfully calibrated and refined, the Stempedia model will be used to provide weekly early warnings on the risk of the disease. Based on the forecasts, national extension agencies will develop relevant advisories and extend them to farmers.

Authors: M. Shahidul Haque Khan, CIMMYT and Sultana Jahan, CIMMYT

New Infographics Illustrate Impact of Wheat Blast

Posted on Bangladesh-news, News - Homepage, News & Announcements, February 7, 2019

Wheat blast is a fast-acting and devastating fungal disease that threatens food safety and security in the Americas and South Asia.

First officially identified in Brazil in 1984, the disease is widespread in South American wheat fields, affecting as much as 3 million hectares in the early 1990s.

 In 2016, it crossed the Atlantic Ocean, and Bangladesh suffered a severe outbreak. Bangladesh released a blast-resistant wheat variety—developed with breeding lines from the International Maize and Wheat Improvement Center (CIMMYT)—in 2017, but the country and region remain extremely vulnerable.

The continued spread of blast in South Asia—where more than 100 million tons of wheat are consumed each year—could be devastating.

Researchers with the CIMMYT-led and USAID-supported Cereal Systems Initiative for South Asia (CSISA) and Climate Services for Resilient Development (CSRD) projects partner with national researchers and meteorological agencies on ways to work towards solutions to mitigate the threat of wheat blast and increase the resilience of smallholder farmers in the region. These include agronomic methods and early warning systems so farmers can prepare for and reduce the impact of wheat blast.

This series of infographics shows how wheat blast spreads, its potential effect on wheat production in South Asia and ways farmers can manage it.   

CIMMYT and its partners work to mitigate wheat blast through projects supported by U.S. Agency for International Development (USAID), the Bill and Melinda Gates Foundation, the Australian Centre for International Agricultural Research (ACIAR), Indian Council for Agricultural Research (ICAR), CGIAR Research Program on WHEAT, and the CGIAR Platform on Big Data

See more on wheat blast here: https://www.cimmyt.org/wheat-blast/

Seeing is Believing: Videos Increase Uptake of New Technologies

Posted on Bangladesh-news, CSISA Success Story, News - Homepage, News & Announcements, February 7, 2019

Discussions on the video show of yield enhancing practices such as healthy rice seedling production and early wheat sowing throughout southern Bangladesh
(Photo: M. Shahidul Haque Khan, CIMMYT)

The Cereal Systems Initiative for South Asia (CSISA), in collaboration with the Bangladeshi NGO Agricultural Advisory Society (AAS), recently conducted video showings of yield-enhancing practices such as healthy rice seedling production and early wheat sowing throughout southern Bangladesh. Early wheat sowing and healthy rice seedlings are both key sustainable intensification practices in Bangladesh as early sowing helps wheat avoid terminal heat, which decreases yield, and the use of healthy seedlings ensures the rice crop has a strong start.

These shows were watched by a total of 110,825 farmers in 16 districts, including Jashore, Faridpur and Barishal, between October and December 2018.

Earlier CSISA had used video-based messaging as a tool to increase uptake of sustainable intensification practices, and it proved to be a reliable extension tool. A follow-up study of CSISA’s 2012 and 2015 screenings of agricultural production videos showed that of the 17,736 farmers who attended the video shows and training sessions, approximately 51% continued to use better-bet agronomic management techniques to grow healthy rice seedlings on 4,700 hectares in the winter (boro) season.Many of the farmers also carried forward the practices they learned from the video shows into the 2018 monsoon (aman) season, which resulted in 9,616 hectares being brought under healthy rice seedling practices.

CSISA’s survey results showed that adoption of healthy rice seedling growing techniques can be sustained if they are easily implemented, effective and productivity enhancing. At least 99% of the farmers who took part in the survey continued to use at least one practice, and others continued to implement a combination of new healthy rice seedling practices.

Locations where the videos have been shown in Bangladesh.

After the video screenings, audiences participated in question and answer sessions. During these interactions, farmers asked the organizers to clarify points that were unclear or to describe the benefits and costs of adopting new methods. Participants also shared other opinions or ideas that would increase the overall yield of rice and wheat.

The videos will be uploaded on CSISA’s website and those of its local partners, as well as on social media. This will help farmers who were unable to participate in the screenings easily access the videos through their mobile phones from anywhere in Bangladesh. Similar video showings are planned for the coming rabi season of 2019/20 to achieve an even wider reach.

Authors: Sultana Jahan, Mustafa Kamal, Harun-Ar-Rashid and M. Shahidul Haque Khan (CIMMYT)

Strategic Partnership Facilitates Mungbean Scaling in Nepal

Posted on CSISA Success Story, Nepal-news, News - Homepage, News & Announcements, Uncategorized, February 7, 2019

Millers and GATE Nepal discussing the mungbean grain quality demanded in the market
(Photo: Narayan Prasad Khanal, CIMMYT)

Mungbean is a relatively new crop in Nepal, so relevant research and development activities are still just emerging. In 2015, the Cereal Systems Initiative for South Asia (CSISA), supported by USAID, started conducting participatory research and development, including market development activities for mungbean in partnership with the National Grain Legume Research Program, millers and seed companies.

Mungbean, a short-duration crop of 60 to 80 days’ maturity, fits in well in a rice–winter crops–fallow rotation, reaching maturity just before rice transplanting in July. Mungbean is consumed as dal (soup), used as an ingredient for Dalmot (snacks), Bhujiya, sprouts, biscuits and baby food. Its biomass remains green even after the third picking, and rice yield can be increased by 25% if mungbean residue is incorporated into the soil. Unfortunately, cultivation of mungbean as a spring season crop is not widely practiced by farmers in Nepal.

In late 2018, CSISA facilitated a strategic partnership between Poshan Food Product (PFP) Ltd. (a miller), GATE Nepal (a seed company) and local agricultural cooperatives to strengthen the mungbean value chain and market. This partnership has been made possible because of an innovation by the miller in the process of making a baby food called Balbhojan.

The mungbean-containing baby food, “Balbhojan,” developed by Poshan Food Product Ltd.

Poshan Food Product Ltd. had always prepared Balbhojan by combining wheat, millet and buckwheat. While participating in a CSISA meeting in January 2017, the owner of Poshan Food Product, Mr. Narayan Gnawali, became aware of the health benefits of mungbean and changed the product’s recipe so that it would be composed of 20% mungbean. To fulfill his company’s new demand, he purchased 10 tons of mungbean grain from Banke and Bardiya districts in May 2017.

After changing the 1-kg and 0.5-kg packets of baby food to the new mungbean-containing mix, his company’s monthly demand for mungbean doubled within six months, and was four times higher by December 2018. Now the miller consumes 1.5 tons of mungbean every month, meaning that 18 tons of mungbean grain will be needed every year even if their current baby food business does not grow further.

In a recent CSISA meeting, Mr. Gnawali said, “I can buy up to 100 tons of mungbean if cooperatives or seed companies supply me properly graded products.” Now, GATE Nepal has agreed to provide mungbean-grading services using extra graders within the company. Poshan Food Product Ltd. has also started selling graded whole grain mungbean under the brand “Nepali Mung.” The product is used for sprout production and dal preparation.

Figure 1. Mungbean seed sales trend by GATE Nepal

Considering the increasing demand for sprouts in local supermarkets, Poshan Food Product Ltd. is also planning to produce mungbean sprouts starting this year. Seeing the success of the strategic partnership, the government of Nepal’s Province 7 has decided to provide extension support (e.g., seed, irrigation, plant protection) for mungbean growers within a 500 ha area under its soil health improvement program. CSISA continues to provide technical support on better-bet agronomy, mechanization and market development to strengthen the partnership and to support the scaling of mungbean cultivation.

Authors: Narayan P. Khanal, CIMMYT, and Dyutiman Choudhary, CIMMYT

Experts Identify Policy Gaps in Fertilizer Application in India

Posted on CSISA Success Story, India-news, News - Homepage, News & Announcements, Uncategorized, February 7, 2019

A farmer in Ara district, Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium.
(Photo: Dakshinamurthy Vedachalam, CIMMYT)

The application of fertilizers that do not meet the nutrient requirements (i.e. balanced nutrient application) of target crops is a widespread problem in India. Farmers overuse urea (N) and seldom apply secondary nutrients (Sulphur, Calcium, and Magnesium) and micro-nutrients (like Zinc, Iron, Copper, Boron, Molybdenum and Manganese) in their plots. This imbalanced application of nutrients affects both long-term health of the soil as well as farmers’ own net incomes from agriculture. How do we deploy scientific research, business innovations, and public policies and programs to help promote balanced use of fertilizers in Indian agriculture? As part of the Cereal Systems Initiative for South Asia (CSISA), the International Food Policy Research Institute (IFPRI) and the International Plant Nutrition Institute (IPNI) organized a National Dialogue on “Innovations for Promoting Balanced Application of Macro and Micro Nutrient Fertilizers in Indian Agriculture” on December 12, 2018, in New Delhi, India, to discuss practical answers to these questions.

 Farmer leaders, representatives from fertilizer cooperatives, private companies and the Fertilizer Association of India (FAI) participated in the dialogue along with state officials, researchers from national research institutions, CG centers, the World Bank and Indian think tanks to share their ideas and experience and explore new strategies. This dialogue initiated conversations on three themes: a) policy changes and other innovations needed to accelerate the development of new fertilizer blends; b) ways to develop a soil intelligence system for India, and c) changes in extension and communication of soil health information to farmers to enable the adoption of scientific recommendations.

The introductory session provided the necessary background and the context for the deliberations that followed. Avinash Kishore of IFPRI presented evidence on the myth of farmers being highly sensitive to changes in fertilizer prices. Using plot-level data from a large nationally representative sample of farmers, he showed that farmers’ demand for DAP and Potash did not change significantly, even after a steep increase in prices after a change in subsidy policy in 2011. Avinash contended that removal or rationalization of subsidies alone will not be enough to promote balanced use of fertilizers. Scientifically informed extension efforts would still be needed.

The Director General of the Fertilizer Association of India (FAI), Shri Satish Chander, pointed out that new-product approvals in India take approximately 800 days. However, he explained, this delay is not the biggest problem facing the sector: other barriers include existing price controls that are highly contingent on political myths.

Andrew McDonald of CIMMYT emphasized the need to develop a soil intelligence system for India and shared CSISA’s ongoing work on developing such a system for Andhra Pradesh and Bihar. In both states, scientists are working to combine the rich data already collected under the Soil Health Cards (SHC) program with spectroscopic measurement of soil properties and remote sensing images to create a rich array of information on soil and plant nutrition requirements customized to the specific needs of farmers and policymakers at a landscape level.

Dr. T. Satyanarayana of IPNI highlighted the importance of micronutrients in promoting balanced fertilization of soils and innovative methods that exist in determining soil health for appropriate action. Mr. Ajay Vir Jakhar, chairman of Punjab Farmers’ Commission, highlighted the need to strengthen the public extension system to bring scientific information to farmers.

Director General of FAI, Shri Satish Chander, averred that while approval of new fertilizer blends in India is slow and cumbersome, it is not the main hurdle to move innovation in India’s fertilizer sector. The Fertilizer Control Order (FCO) has undergone reforms over the years. While more reforms in the FCO will be helpful, price control and heavy subsidy on Urea, a large share of which, he said, goes to international fertilizer companies and not farmers, was the big problem in India’s fertilizer sector.

Other representatives from the fertilizer industry touched upon the need to identify farmer requirements for risk mitigation, labor shortages and site-specific nutrient management needs for custom fertilizer blends. Participants also discussed field evidence related to India’s soil health card scheme. Ultimately, discussions held at the roundtable helped identify relevant policy gaps.

Authors: Vartika Singh, IFPRI, and Vedachalam Dakshinamurthy, CIMMYT

Maize Farmers’ Groups: A Mechanism to Facilitate Strong Market Linkages

Posted on CSISA Success Story, India-news, News - Homepage, News & Announcements, February 7, 2019

Aggregated final produce of small maize farmers ready to be shipped in Odisha, India.
(Photo: Jitendriya Jena)

Since 2013, the Cereal Systems Initiative for South Asia (CSISA) has been sustainably intensifying kharif maize cultivation in a rainfed ecology on the north-central plateau of Odisha, India, in Mayurbhanj and Keonjhar districts. Through the promotion of better-bet agronomy (e.g., suitable hybrids, line planting, nutrient and weed management), maize yields of adopter farmers in Mayurbhanj and Keonjhar can reach 5.4 t/ha, up from an average of 2.5 t/ha.

In collaboration with the Odisha State Department of Agriculture, CSISA scaled up sustainable intensification practices on 5,227 hectares in 2018, from almost zero five years ago. Random cuttings by CSISA over the last three years on farmers’ fields showed that maize yields have consistently improved and become more uniform (as shown in the accompanying violin plot), both of which are required for farmers to strengthen their market linkages. Unfortunately, farmers have not been able to translate their increasing harvests into higher returns due poor linkages with output markets.

Although large institutional grain buyers such as hatcheries and feed mills are located nearby, in the past they were not interested in procuring maize grain locally because farmers produced a relatively small marketable surplus and grain quality was uneven. Efforts had been made earlier to improve maize grain marketing, but these efforts only partially succeeded because some interventions  were not equitable and some were not scalable. Private aggregator-based models favored middle marketing agents over farmers because prices at the farm gate were low compared to prices at the industry gate. Models focused on individual farmers generated high transactions costs at the buyers’ end. Therefore, a mechanism was still required that could ensure benefits to farmers but also be convenient for large buyers.

Before the 2018 maize planting season, CSISA held brainstorming sessions with the Odisha State Agriculture Marketing Board and the Department of Agriculture and Farmers’ Empowerment to devise a transparent, farmer-friendly, scalable marketing mechanism that would also be attractive to buyers.

In response to the discussions, CSISA began organizing the maize farmers into groups. The farmers’ groups cultivated maize on a consolidated patch, which helped ensure uniform cultivation practices and standardized postharvest activities. Training sessions and follow-up backstopping encouraged timely harvesting, mechanical threshing and adequate grain drying. These practices were essential for matching grain quality to industrial specifications (less than 14% grain moisture and not more than 1% fungus-infected grains).

The maize-producing groups had committed to selling their harvest together, in bulk. Prior to the maize-harvesting period (Oct. – Nov.), CSISA and the local administration convened a meeting of potential large buyers. At this meeting, buyers agreed to purchase the grain at US$ 240/ton (if grain quality meets standard industrial parameters), the Government of India’s current minimum support price.

In November 2018, Maa Ganga Maize Producer Group, composed of 20 women farmers, sold 22.3 tons of maize grain to the local hatchery and generated a gross revenue of US$ 5,330. Another group of 21 farmers sold 25 tons and made US$ 5,985. These amounts were shared amongt member farmers in proportion to the amount of grain they contributed. Venkateswara Hatcheries Pvt. Ltd., the biggest buyer of maize in the region, alone purchased more than 200 tons during the season. Other buyers then followed suit (information about total production and sales is currently being compiled). In contrast, farmers who had not joined a producer group sold their produce at around US$ 180/ton. CSISA plans to bring all maize growers of this area onto the same platform so that they can also obtain the economic gains that can be generated by adopting sustainable intensification practices.

Women farmers threshing their maize harvest in tribal part of Odisha, India.
(Photo: Wasim Iftikar)

Author : Ajay Anurag, CIMMYT

Soil Intelligence System for India Launched

Posted on CSISA Success Story, India-news, News - Homepage, News & Announcements, January 31, 2019

K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University (front), explains soil spectra during the opening of the soil spectroscopy lab at the Regional Agricultural Research Station in Tirupati, Andhra Pradesh.
(Photo: Dakshinamurthy Vedachalam, CIMMYT)

The Soil Intelligence System (SIS) for India, a new $2.5 million investment by the Bill & Melinda Gates Foundation, will help the states of Andhra Pradesh, Bihar and Odisha rationalize the costs of generating high-quality soil data while building accessible geospatial information systems based on advanced geostatistics. The SIS initiative will rely on prediction, rather than direct measurements, to develop comprehensive soil information at scale. The resulting data systems will embrace FAIR (findable, accessible, interoperable, and reproducible) access principles to support better decision-making in agriculture.

The initiative aims to facilitate multi-institutional alliances for soil health management and the application of big data analytics to real-world problems. These alliances will be instrumental for initiating broader discussions at state and national levels about the importance of robust data systems, data integration and the types of progressive access policies related to ‘agronomy at scale’ that can bring India closer to achieving the Sustainable Development Goals.

SIS is led by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with numerous partners including the International Food Policy Research Institute, ISRIC – World Soil Information, the state governments and state agriculture universities of Bihar and Andhra Pradesh, and the Andhra Pradesh Space Applications Center. The initiative began in September 2018 and will run until February 2021.

SIS functions as a co-investment in the Cereal Systems Initiative for South Asia (CSISA) and utilizes two new soil spectroscopy laboratories that were recently set up in Andhra Pradesh and Bihar under CSISA  in collaboration with the respective states’ departments of agriculture. One laboratory is now operating at the Regional Agricultural Research Station in Tirupati, Andhra Pradesh, the other at Bihar Agricultural University (Sabour) in Bhagalpur, Bihar. Spectroscopy enables precise soil analysis and can help scientists identify appropriate preventive and rehabilitative soil management interventions. The technology is also significantly faster and more cost-effective than wide-scale, wet, chemistry-based soil analysis. The SIS Initiative will also review options for incorporating digital technologies such as route planning and QR coding approaches into the programming of state partners and will assist our partners to adopt digital technologies to enhance soil sampling and analysis operational efficiencies.

Farmers will be the primary beneficiaries of this initiative, as they will receive more reliable soil health management recommendations to increase yields and profits. The initiative will also be useful to state partners, extension and agricultural development institutions, the private sector and other stakeholders who rely on high-quality soil information. Through SIS, scientists and researchers will have an opportunity to receive training in modern soil analytics, and combine mapping outputs with crop response and landscape reconnaissance data through machine-learning analytics to derive precise agronomy decisions at scale.

“The support from CIMMYT through the Gates Foundation will contribute directly to bringing down the cost of providing quality soil health data and agronomic advisory services to farmers in the long run,” said K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University. “We will also be able to generate precise digital soil maps for land use planning. The greatest advantage is to enable future applications like drones to use multi-spectral imagery and analyze rapidly large areas and discern changes in soil characteristics in a fast and reliable manner.”

Authors: Vedachalam Dakshinamurthy, CIMMYT, and Cynthia Mathys, CIMMYT

New video highlights value of mechanization in Nepal

Posted on CSISA Success Story, Nepal-news, News - Homepage, News & Announcements, July 29, 2018

 

CSISA has launched a new video highlighting the value of scale-appropriate mechanization and the benefits of service provision in Nepal. Featuring farmers who have adopted technologies such as seed drills, power tillers, mini tillers and reapers, the video highlights that mechanization can save time and costs and reduce drudgery. Participating farmers also point out that extra income can be made from becoming a service provider and that this extra income can help reduce incentives for Nepal’s youth to go abroad looking for work.

Khumlal Chaudhary, a service provider in Rupandehi, says in the series, “I am extremely busy [providing services to other farmers]. It gets so hectic that I have to switch off my phone sometimes. […] I now have two sources of income. I am a farmer so I make income from what I grow in my fields. I also provide services with my tractors and the seed drill machine. The two activities help me make a good living.”

Yogendra Chaudhary says that since he and his son are able to make money through service provision, his son decided to remain in Nepal to work on the family’s farm instead of seeking employment abroad, and that the machines allow them to remain together, work together and prosper together.

Sutra Media Works and the CSISA team hosted video showings in four of CSISA’s working domains so that farmers, potential service providers, self-help groups and Nepal government representatives could see the film, ask follow-up questions and discuss locally relevant issues raised by the video. These community video showings were preceded by farmers’ field days and demonstrations of sustainable intensification technologies, and were followed by question and answer sessions.

Shown in Baridya, Dang, Kailali and Kanchanpur districts with 296 attendees (including 72 women), the video was well received and generated discussion about the following preconditions for mechanization to spread broadly: (1) increased awareness of agricultural technologies and their providers at the local level, (2) technical training on how to use the equipment, (3) availability of spare parts and repairs for fixing machines, and (4) mechanisms to make the cost of technology and services affordable for farmers.

Attendees included farmers, service providers, machinery traders and public sector representatives from the Nepal Agricultural Research Center, as well as the Prime Minister’s Agriculture Modernization Project, representatives from the Wheat and Rice Zones and “Super Zones.” CSISA is currently sharing the video with relevant governmental and non-governmental agricultural programs, as well as with relevant video sharing websites and broadcast and cable TV outlets, to broadly disseminate important messages about mechanization and service provision throughout Nepal.

 

Author: Cynthia Mathys

Generating accurate and valid scientific results

Posted on CSISA Success Story, India-news, Nepal-news, News - Homepage, News & Announcements, May 21, 2018

Machine learning (ML) allows software applications to become more accurate in predicting outcomes with increased use. ML involves building algorithms that can predict an output value within an acceptable range.

CSISA generates numerous scientific datasets on crop production practices and agronomic field trials, but generating frequent and valid results from these thousands of observations is a challenge. ML tools can help.

CSISA organized a five-day workshop in Odisha to train CSISA scientists from Bihar, eastern Uttar Pradesh (EUP) and Odisha in the use of ML tools – based on the open-source statistical computing and graphics software, ‘R,’ – to analyze CSISA’s crop cut and production practice survey datasets.

Each year, CSISA generates data from multi-location adaptive trials, production practice diagnostic surveys and a few other targeted needs-based surveys in Bangladesh, India and Nepal. These datasets are used to determine the most important yield attributing factor(s), information that could help policymakers target and refine recommendations and advisories. ML allows us to draw quick, accurate and valid results from these datasets.

Under the leadership of CSISA-Nepal’s Socioeconomist, Gokul Paudel, participants jointly reviewed production practice survey datasets, cleaned the data, applied relevant analytical tools and generated results.

The group started by reviewing basic statistics and R-software, the rationale behind ML and algorithms such as classification and regression tree (CART) and random forest models. Using R, participants checked data summary statistics and visualized in histograms, boxplots, scattered plots and correlation plots. With CART, the participants produced graphical results by chronologically classifying covariates in terms of their possible predictive roles in a particular outcome. CART showed that sowing date is the most important factor in determining wheat yield in Bihar and EUP, followed by crop establishment method, amount of nitrogen applied and number of irrigations.

Participants also used the random forest model, which is more robust in terms of training and validation performance because multiple decision trees, based on different characteristics, are built. Results also identified sowing date as the most important factor, also matching CART results for other covariates determining wheat yield.

These ML results provide sufficient evidence of the role of sowing date in wheat yield in UP and Bihar, which has also been documented earlier by CSISA.

This team of CSISA scientists successfully analyzed and visualized data with modern statistical tools and gained confidence to consistently undertake robust diagnostic surveys and collaborative research trials, as well as generate location specific insights, discuss these insights with partners and inform decision makers at relevant levels. All publications, along with full datasets, will be made available to the public through open source channels.

Overcoming gender gaps in rural mechanization

Posted on Bangladesh-news, CSISA Success Story, News - Homepage, News & Announcements, May 21, 2018

The custom hiring of labor- and cost-saving agricultural machinery services is increasingly common in South Asia. With agricultural machinery, gender gaps exist not only in the use of these technologies, but in farmers’ ability to rent and hire them.

To explore
gender dynamics in emerging markets for
agricultural machinery service-provision in 
 Bangladesh, the Gender, Climate Change, and Nutrition Integration Initiative (led by IFPRI), CSISA and CSISA-MI partnered to conduct qualitative research in Faridpur and Jhenaidah districts in October–December 2017. The team interviewed husband and wife machine service providers, men and women who hire machines for their farms, women farmers in non-mechanized farming households, and CSISA staff and community leaders.

Researchers focused on machinery services for multi-crop reaper-harvesters, which enable farmers to rapidly cut crops during harvest. Service providers running reaper businesses often hire skilled machine operators to harvest farmers’ fields. Women and men in the study identified multiple benefits of hiring reaper services, including the reduction of drudgery, the ability to pay for services after receiving them (unlike when they hire laborers, whom they have to pay up front), the time saved during crop harvesting, and the cost savings associated with using a machine rather than laborers who need to be housed and fed.

Unfortunately, women were found to face multiple barriers to running reaper-based service provider businesses, including: cultural norms preventing them learning about machines from men, lack of capital for investing in machines, fewer connections to help them advertise machine services, an unwillingness among men to operate machines for women, and a lack of family and community support for women who want to work outside the home.

Despite these gender-based constraints, many women still expressed interest in participating more or starting their own reaper service provision business. The following approaches can help close gender gaps in reaper-based business ownership: models that allow joint machine ownership and provide training to men and women equally; leveraging women’s networks to expand their potential client 
 bases; well-targeted, smart subsidies that make machine procurement more accessible for women; encouraging savings and loan associations to provide credit to women; models of group-based machine ownership; mobile phone-based payment options for clients; and sensitizing men to women’s contributions to service provision businesses.

Clearly, women benefit from managing and sometimes owning machinery services, as well as from the direct and indirect consequences of hiring such services to harvest their crops. However, a number of technical, economic, and cultural barriers still constrain women’s full participation in these benefits. Initiatives that promote rural machinery services should more fully engage women as business owners and users of machinery to expand the benefits of these markets throughout South Asia and other farming geographies dominated by smallholders.

CSISA and Bihar Agriculture University launch redesigned Soil Health Card

Posted on CSISA Success Story, India-news, News - Homepage, News & Announcements, May 21, 2018

 

Bihar Agricultural University (BAU), in collaboration with CSISA, launched a new Soil Health Card in Bihar in February 2018. The Indian Government’s Soil Health Card scheme was launched in 2015 to provide 130 million Indian farmers with a ‘soil report card,’ issued once every two years. Soil health cards reflect indicators of soil health, as determined by a lab-based analysis of soil samples from each farmer’s field. The card also recommends corrective measures to improve the soil, if needed.

The scheme’s objective is to help farmers improve soil health and productivity through the judicious use of chemical fertilizers, organic manures and bio-fertilizers. To make the cards more user-friendly, the Krishi Vigyan Kendra (farm science center) system, with support from BAU and CSISA, studied the soil health card’s strengths and weaknesses, as well as farmers’ experiences in trying to interpret the results and implement the recommendations. Results indicated that farmers face significant challenges in applying laboratory data to their field crops. Therefore, the KVKs, BAU and CSISA agreed to redesign the card.

In 2017, CSISA researchers also conducted soil health card user tests with farmers in Bihar and Odisha, soliciting detailed feedback on the card’s content and ease-of-use. Researchers found that although farmers valued the cards because they perceived the content to be useful, they struggled to understand the information due to a confusing format, overly scientific terminology and insufficient inclusion of images. This farmer feedback was presented to scientists at BAU in late 2017 and early 2018. Based on this feedback, BAU scientists endorsed a proposed new design. The redesigned the soil health card aims to improve farmers’ ability to absorb, interpret and use the recommendations included on the card.

The new card was written in the most common regional language and featured additional symbols and images to help farmers understand and interpret the contents, hopefully also making it easier for them to implement the recommendations. On February 24, 2018, the Union Minister of Agriculture and Farmers’ Welfare launched the redesigned soil health card at a regional Kisan Mela (agriculture fair) organized by BAU. The Bihar Minister of Agriculture and the Vice Chancellor of BAU facilitated the release of the new soil health card.

The success of the soil health card scheme depends not only on whether India’s network of soil chemistry laboratories can keep up with the dramatically increased demand for soil analysis, but also on whether the soil health cards can effectively influence farmers’ decision making.

Following distribution of the revised soil health cards to farmers in Bihar, CSISA intends to conduct follow-up surveys to determine whether the new design has increased farmer comprehension and implementation of the recommendations, or whether further innovation is required. Additional initiatives can also be undertaken in CSISA’s other priority geographies, including Odisha and Andhra Pradesh.

Mapping Indian soils at scale

Posted on CSISA Success Story, India-news, News - Homepage, News & Announcements, May 20, 2018

In India, a wealth of soil analytical data are generated by soil sampling programs such as the All India Soil Sampling Program and the Soil Health Card scheme. These rich data assets allow scientists to use state-of-the-art technologies and methods to produce digital maps of key soil fertility parameters that can support bringing soil fertility recommendations to scale.

Digital soil mapping (DSM), defined as the ‘computer-assisted production of digital maps of soil types and soil properties,’ makes use of (geo)statistical models that predict the soil type or property from a limited number of soil observations from a sample data set for locations where no samples have been taken. These ‘unsampled locations’ are typically arranged on a regular grid, i.e. DSM produces gridded (raster) soil maps at a specific spatial resolution (grid cell or pixel size) with a spatial prediction made for each individual grid cell.

Adopting DSM methods, combined with intelligent sampling design, could reduce the strain on the soil testing system in terms of logistics, quality control and costs. Improving digital soil mapping practices can also help create the infrastructure for a soil intelligence system that can drive decision-making at scale.

In November 2017, the Cereal Systems Initiative for South Asia (CSISA) engaged Dr. Bas Kempen of ISRIC – World Soil Information to provide a 5-day, hands-on training on digital soil mapping to 17 participants from Bihar, Andhra Pradesh and Odisha. Held at the Andhra Pradesh Space Applications Centre in Vijayawada, the training focused on capacity development and the generation of fine-scale digital soil maps at state and district levels using local data.

The training started by covering the essentials of ‘R,’ which is a useful, free statistical software. The group then learned about quantifying and modeling spatial variation with a variogram, followed by discussions about geostatistics and a machine learning algorithm called ‘random forest’, a powerful algorithm to model the predictive relationship between the soil property of interest and a (large) set of environmental covariates. Next, the participants focused on data preparation, which included organizing soil sample and covariate data, creation of a prediction mask, creation of a covariate stack and the regression matrix (soil sample data set with covariate data associated to each sampling site). The participants worked on a hands-on data preparation exercise using a soil sample data set from Bihar.

The latter part of the training was dedicated to validation and a hands-on DSM exercise using local data. On the last day of the training, the participants finalized and presented their maps, energized that they had produced digital soil maps using local data. The workshop concluded with the identification of follow-up actions that can lead towards the better use of spatial data analytics and DSM methods for bringing improved soil fertility management to scale.

In January 2018, to reinforce the skills taught by Dr. Kempen, CSISA engaged Dr. David G. Rossiter, Adjunct Associate Professor at Cornell University and Guest Researcher at ISRIC, to provide follow-up training on advanced spatial data quality assessments, cleaning and curation, as well as to provide direct mentorship to DSM trainees on the improvement of their ‘first generation’ digital soil maps. First generation maps for soil properties such as critical micronutrients like Zinc and soil pH have been produced and are being validated against field data. Implications for insights into efficient soil sampling at scale are being derived from the maps while critical use cases such as the deployment of predictive maps for precision nutrients management at scale are being evaluated.

In partnership with state government agencies and the Bill & Melinda Gates Foundation, CSISA will continue to provide training and support to these initial participants as well as others, working to expand DSM capacity in India for the efficient and rapid scaling of soil fertility recommendations for farmers.

New systems analysis tools help boost the sustainable intensification of agriculture in Bangladesh

Posted on Bangladesh-news, News - Homepage, News & Announcements, December 5, 2017

 

DHAKA, Bangladesh (CIMMYT) – In South Asia, the population is growing and land area for agricultural expansion is extremely limited. Increasing the productivity of already farmed land is the best way to attain food security.

In the northwestern Indo-Gangetic Plains, farmers use groundwater to irrigate their fields. This allows them to grow two or three crops on the same piece of land each year, generating a reliable source of food and income for farming families. But in the food-insecure lower Eastern Indo-Gangetic Plains in Bangladesh, farmers have lower investment capacities and are highly risk averse. Combined with environmental difficulties including ground water scarcity and soil and water salinity, cropping is often much less productive.

Could the use of available surface water for irrigation provide part of the solution to these problems? The government of Bangladesh has recently promoted  the use of surface water irrigation for crop intensification. The concept is simple: by utilizing the country’s network of largely underutilized natural canals, farmers can theoretically establish at least two well-irrigated and higher-yielding crops per year. The potential for this approach to intensifying agriculture however has various limitations.  High soil and water salinity, poor drainage and water logging threaten crop productivity. In addition, weakly developed markets, rural to urban out-migration, low tenancy issues and overall production risk limit farmers’ productivity. The systematic nature of these problems calls for new approaches to study how development investments can best be leveraged to overcome these complex challenges to increase cropping intensity.

Policy makers, development practitioners and agricultural scientists recently gathered to respond to these challenges at a workshop in Dhaka. They reviewed research results and discussed potential solutions to common limitations. Representatives from more than ten national research, extension, development and policy institutes participated. The CSISA-supported workshop however differed from conventional approaches to research for development in agriculture, in that it explicitly focused on interdisciplinary and systems analysis approaches to addressing these complex problems.

Systems analysis is the process of studying the individual parts and their integration into complex systems to identify ways in which more effective and efficient outcomes can be attained. This workshop focused on these approaches and highlighted new advances in mathematical modeling, geospatial systems analysis, and the use of systems approaches to farmer behavioral science.

Timothy J. Krupnik, Systems Agronomist at CIMMYT and CSISA Bangladesh country coordinator, gave an overview of a geospatial assessment of landscape-scale irrigated production potential in coastal Bangladesh to start the talks.  For the first time in Bangladesh, research using cognitive mapping, a technique developed in cognitive and behavioral science that can be used to model farmers’ perceptions of their farming systems, and opportunities for development interventions to overcome constraints to intensified cropping, was described. This work was conducted by Jacqueline Halbrendt and presented by Lenora Ditzler, both with the Wageningen University.

“This research and policy dialogue workshop brought new ideas of farming systems and research, and has shown new and valuable tools to analyze complex problems and give insights into how to prioritize development options,” said Executive Director of the Krishi Gobeshona Foundation, Wais Kabir.

Workshop participants also discussed how to prioritize future development interventions, including how to apply a new online tool that can be used to target irrigation scheme planning, which arose from the work presented by Krupnik. Based on the results of these integrated agronomic and socioeconomic systems analyses, participants also learned how canal dredging, drainage, micro-finance, extension and market development must be integrated to achieve increases in cropping intensity in southern Bangladesh.

Mohammad Saidur Rahman, Assistant Professor, Seed Science and Technology department at Bangladesh Agriculture University, also said he appreciated the meeting’s focus on new methods. He indicated that systems analysis can be applied not only to questions on cropping intensification in Bangladesh, but to other crucial problems in agricultural development across South Asia.

The workshop was organized by the Enhancing the Effectiveness of Systems Analysis Tools to Support Learning and Innovation in Multi-stakeholder Platforms (ESAP) project, an initiative funded by the MAIZE CRP through the International Maize and Wheat Improvement Center (CIMMYT) and supported in Bangladesh through the  Cereal Systems Initiative for South Asia (CSISA). ESAP is implemented by Wageningen University’s Farming Systems Ecology group and the Royal Tropical Institute (KIT).

by Shahidul Haque Khan / December 4, 2017

Check out CSISA’s Data Repository

Posted on News - Homepage, News & Announcements, October 27, 2017

Kathmandu, Nepal (CSISA) – In keeping with the open data policies of the U.S. Agency for International Development (USAID) and Bill & Melinda Gates Foundation, the Cereal Systems Initiative for South Asia (CSISA) has launched the CSISA Data Repository to ensure public accessibility to key data sets, including crop cut data- directly observed, crop yield estimates, on-station and on-farm research trial data and socioeconomic surveys.

CSISA is a science-driven and impact-oriented regional initiative for increasing the productivity of cereal-based cropping systems in Bangladesh, India and Nepal, thus improving food security and farmers’ livelihoods. CSISA generates data that is of value and interest to a diverse audience of researchers, policymakers and the public.

CSISA’s data repository is hosted on Dataverse, an open source web application developed at Harvard University to share, preserve, cite, explore and analyze research data. CSISA’s repository contains rich datasets, including on-station trial data from 2009–17 about crop and resource management practices for sustainable future cereal-based cropping systems. Collection of this data occurred during the long-term, on-station research trials conducted at the Indian Council of Agricultural Research – Research Complex for the Eastern Region in Bihar, India. The data include information on agronomic management for the sustainable intensification of cropping systems, mechanization, diversification, futuristic approaches to sustainable intensification, long-term effects of conservation agriculture practices on soil health and the pest spectrum.

Additional trial data in the repository includes nutrient omission plot technique trials from Bihar, eastern Uttar Pradesh and Odisha, India, covering 2012–15, which help determine the indigenous nutrient supplying ability of the soil. This data helps develop precision nutrient management approaches that would be most effective in different types of soils.

CSISA’s most popular dataset thus far includes crop cut data on maize in Odisha, India and rice in Nepal. Crop cut datasets provide ground-truthed yield estimates, as well as valuable information on relevant agronomic and socioeconomic practices affecting production practices and yield. A variety of research data on wheat systems are also available from Bangladesh and India. Additional crop cut data will also be coming online soon.

Cropping system-related data and socioeconomic data are in the repository, some of which are cross-listed with a Dataverse run by the International Food Policy Research Institute. The socioeconomic datasets contain baseline information that is crucial for technology targeting, as well as to assess the adoption and performance of CSISA-supported technologies under smallholder farmers’ constrained conditions, representing the ultimate litmus test of their potential for change at scale. Other highly interesting datasets include farm composition and productive trajectory information, based on a 20-year panel dataset, and numerous wheat crop cut and maize nutrient omission trial data from across Bangladesh.

CSISA’s web site also has a variety of other valuable resources, including knowledge management products and training manuals, peer-reviewed publications and project reports. In particular, CSISA has just published training modules on integrated weed management and mechanical tran

Sustaining Gains through India’s Agriculture Technology Application Research Institutes

Posted on CSISA Success Story, India-news, News - Homepage, News & Announcements, October 27, 2017

Delhi, India (CSISA) – In the past year, the Cereal Systems Initiative for South Asia (CSISA), has trained scientists from 15 Krishi Vigyan Kendras (KVKs) – agricultural extension centers – in Bihar and eastern Uttar Pradesh on improved methods of survey design and on the digital data collection tool, Open Data Kit (ODK).

CSISA and its partner KVKs, have identified the strengthening of the monitoring, learning and evaluation (ML&E) systems as a strategic objective of the collaboration. With improved data collection and analysis, the KVKs can assess farmers’ agronomic practices and cropping system productivity to see how their practices compare with state-level agricultural recommendations and to undertake a critical review of official recommendations and update them if necessary.

Designing surveys as digital questionnaires allows surveys to be shorter, more streamlined and faster to implement. Digital data collection allows researchers and ML&E staff to generate datasets in real time, reducing the time it takes to collect data and minimizing the opportunities for error that occur when transferring data from paper forms to electronic spreadsheets. ODK is an open-source platform that is easy for KVKS to adopt, streamline and facilitate data collection, storage, analysis and sharing.

From the first batch of 15-trained KVKs, seven have already deployed improved survey design methods and implemented a survey through ODK. Seven KVKs in Bihar are conducting a coordinated survey on wheat production practices for the 2016-17 cropping season. The survey covers 129 villages and 1,855 farming households. From the findings, it was quickly observable that farmers are using slightly more nitrogen- and phosphate-based fertilizers than recommended by the state agriculture universities and official dose recommendations. Using higher-than-recommended fertilizer doses does not increase yields, only cost.

CSISA has worked with KVKs since 2015 to test and modify locally-relevant technologies and help integrate successful technologies into the government’s official package of practices for each state.

CSISA is facilitating KVK scientists to survey farmers’ practices and conduct agronomic trials on nutrient productivity so that they can feed locally relevant research results into extension systems. In the areas where KVKs operate, improved ML&E systems, as well as better, cleaner and more readily available data, can help these KVKs align their activities with the seasonal priorities and investments of the state-level departments of agriculture, as well as help inform the research priorities of the state agriculture universities.

The Cereal Systems Initiative for South Asia is led by the International Maize and Wheat Improvement Center and implemented jointly with the International Food Policy Research Institute and the International Rice Research Institute.

This article was authored by Anurag Ajay.

Photo credit: Anurag Ajay/CIMMYT

Engagement with Prime Minister’s Agriculture Modernization Project in Nepal

Posted on CSISA Success Story, Nepal-news, News - Homepage, News & Announcements, October 27, 2017

Nepal (CSISA) – In July 2017, the Cereal Systems Initiative for South Asia (CSISA) and the Prime Minister’s Agriculture Modernization Project (PMAMP) jointly held a working group forum, aiming to unify and coordinate the efforts of 21 public and private stakeholders working on research, extension and private sector development for wheat in Nepal. The forum emphasized the need to identify proven best practices for sustainable intensification of wheat, explored possible scaling pathways for knowledge and technological innovations and identified knowledge gaps and areas for future research. The group also laid out a strategy for development of a joint work plan for the 2017–18 wheat season.

The Government of Nepal recently endorsed a new twenty-year agriculture development strategy that charts a progressive course of action to revitalize agriculture as an engine for economic growth and domestic food security. At the center of this strategy is the recently-launched PMAMP, designed to enhance productivity and commercialization of major cereals, fisheries, fruits and vegetables over the next decade. The PMAMP has laid out a structure of super zones -commercial areas of more than 1,000 ha, zones – areas over 500 ha, blocks – over 50 ha and pockets – over 10 ha, these are defined areas across the country that receive government support to produce particular crops intensively.

CSISA has been closely working with PMAMP from its inception in 2016 by providing technical backstopping at the central and local levels for the wheat, maize, rice and farm mechanization programs. CSISA sees PMAMP as a key mechanism for scaling up sustainable intensification technologies in Nepal due to the large geographic reach of the program.

Since early 2017, CSISA has provided PMAMP staff technical guidance on seasonal activity planning and has facilitated cross-learning events and ‘trainings of trainers’ to super zone and zone technicians and operational committees on how to implement and out-scale sustainable intensification technologies. CSISA has also developed training materials, educational videos and other extension materials for utilization by the cereal- and mechanization-based programs.

In the recent forum, Rajan Dhakal, Senior Agriculture Officer at PMAMP, remarked that the discussions were instrumental in identifying technical priorities for wheat and revealing how the efforts of diverse partners can contribute to the food security goals of the Government of Nepal.

Similarly, Yagya Prasad Giri, Chair and Director of Crops and Horticulture at National Agriculture Research Council (NARC), said he appreciated CSISA’s efforts to facilitate discussion and coordination across a diverse set of stakeholders through a common and action-oriented platform.

Drawing on the success of the wheat forum, PMAMP is planning to convene meetings for maize and rice with support from NARC, CSISA and private sector partners within the next two months. CSISA will continue to provide technical support for program implementation and scale-up, as well as advice on seasonal planning, in recognition of the value of public-private collaborations around sustainable intensification issues in Nepal.

The Cereal Systems Initiative for South Asia is led by the International Maize and Wheat Improvement Center and implemented jointly with the International Food Policy Research Institute and the International Rice Research Institute.

This article was authored by Mina Devkota.

Photo credit: CIMMYT

Campaign for Healthy Rice Uses Video as a Medium to Extend Reach

Posted on Bangladesh-news, News - Homepage, News & Announcements, October 27, 2017

DHAKA, Bangladesh (CSISA) – The Cereal Systems Initiative for South Asia (CSISA), in collaboration with the Agricultural Advisory Society (AAS), is scaling out a campaign in Bangladesh to increase farmers’ knowledge and skills on quality rice seedling production.

Reaching the vast number of individuals of rural Bangladesh’s huge farmer population presents a formidable challenge to the agricultural extension system’s capacity. The diversity and geographic spread of Bangladesh’s farmers also challenge extensions’ ability to link farmers with innovative and locally relevant agricultural research findings.

CSISA has launched a partnership with the AAS, an NGO, to help disseminate agricultural research and extension messages to large numbers of farming villages, highlighting locally relevant sustainable intensification technologies.

In 2012, CSISA and AAS teamed up to field test an initiative to use videos to spread agricultural information. CSISA and AAS organised 482 screenings of the Bangla language video ‘Save more, grow more, earn more,’ which introduces farmers to small-scale agricultural machinery that can be attached to two-wheeled tractors. These implements seed and fertilize crops in a way that saves fuel and labour, allowing farmers to profit while reducing irrigation requirements.

Groups of volunteers in over 300 communities distributed over 3,000 DVDs across Bangladesh and the video aired 12 times on the national station, Bangladesh Television, which resulted in a viewership of 28 million.

The initiative was so successful that it earned the prestigious international Access Agriculture Award for the use of training videos for farmer outreach in 2015.

Based on this experience, CSISA and AAS worked together this year to use video shows to increase farmers’ knowledge and skills on quality rice seedling production. The team screened ‘Healthy Rice Seedlings’ in 11 districts within Southern Bangladesh during May-July, reaching an audience of at least 23,970 people.

“Video-based material is very important for agricultural extension,” said Rezaul Karim Siddique, the director of this video production. “[Videos] create awareness among farmers about new technologies, disseminate scientific knowledge to marginalized people and areas, and can reduce knowledge gaps in agricultural production.”

Now, over 205,000 farmers have seen CSISA-related videos in the target area in Bangladesh.

The Cereal Systems Initiative for South Asia is led by the International Maize and Wheat Improvement Center and implemented jointly with the International Food Policy Research Institute and the International Rice Research Institute.

A Boost for Machinery Testing and Training in Nepal

Posted on CSISA Success Story, Nepal-news, News - Homepage, News & Announcements, October 27, 2017

NALWAPUR, Nepal (CSISA) – A targeted investment by the U.S. Agency for International Development has boosted the government of Nepal’s capacity to test innovative, scale-appropriate agricultural machinery and conduct agricultural machinery training programs for local farmers, operators and mechanics.

In collaboration with the Cereal Systems Initiative for South Asia in Nepal (CSISA)’s Mechanization and Irrigation project, the government of Nepal is launching two new centers in the coming months: an Agricultural Machinery Testing and Research Center, established by the Nepal Agricultural Research Council (NARC), and the Central Agricultural Machinery Training Center, established by the Department of Agriculture’s Directorate of Agricultural Engineering.

The Agricultural Machinery Testing and Research Center will greatly improve NARC’s capacity to evaluate agricultural machinery as well as to suggest changes, and where appropriate, implement design improvements. The center will allow NARC to oversee the quality of manufactured agricultural machinery as a service to importers, local manufacturers and Nepal’s farmers.

The Central Agricultural Machinery Training Center aims to strengthen the Directorate of Agricultural Engineering’s capacity to conduct training programs on agricultural machinery operation and maintenance for farmers and service providers, and for agricultural machinery repair for mechanics. The establishment of these new centers fulfills part of Nepal’s Agriculture Mechanization Promotion Policy, as well as the larger Agricultural Development Strategy of Nepal.

Collaborative work between CSISA, NARC and the Engineering Directorate began in 2015 with the initial site selection process. Both NARC and the Engineering Directorate wanted the centers to be centrally located to facilitate collaboration, dialogue and knowledge sharing between the centers. The NARC center obtained a 10-hectare parcel of underutilized research farmland in Nawalpur, overseen by a separate NARC research program, which is undergoing renovations to create offices, storage and equipment space. The Directorate of Agricultural Engineering finalized selection of a nearby site, which is currently undergoing approval by the Ministry of Agriculture and Development.

CSISA, NARC and the Engineering Directorate have now started the procurement process of relevant machinery for the facilities. For NARC, one of the center’s most important testing machines is a dynamometer, which calculates exact power outputs of motors. This center also procured mechanical vibration testing equipment and various sensors for measuring torque, revolutions per minute, drawbar force and digital telemetry for data transfer from the machinery in testing. NARC has also started field-testing new two-wheel tractor seeders and planters.

For the Engineering Directorate’s Machinery Training Facility, a wide variety of tools and equipment have been procured to support upcoming agricultural trainings. The equipment includes diverse hand tools, power tools, field equipment, tractors, tractor attachments and specialized training devices such as small agricultural machinery cutaways. Such machinery will be used to train lead farmers in the use and maintenance of scale-appropriate machinery, as well as to train technicians, mechanics and blacksmiths in machinery manufacturing and repair.

The establishment of these new centers represents a deepening of support by USAID and CSISA to scale-appropriate mechanization research and development in Nepal and highlights their long-standing commitment to, and cooperation with, the Government of Nepal, NARC and the Department of Agriculture, in providing research and technologies needed by Nepal’s farmers. As evidence of the government of Nepal’s commitment to these centers and the growth of agricultural mechanization, NARC recently announced a US$ 100,000 co-investment in the Agricultural Machinery Testing and Research Center, complementing the nearly US$ 300,000 investment made across both centers by CSISA.

The Cereal Systems Initiative for South Asia is led by the International Maize and Wheat Improvement Center and implemented jointly with the International Food Policy Research Institute and the International Rice Research Institute.

This article was authored by Scott Justice.

Photo credit: K. Bhatta/CIMMYT

Dry Direct-Seeded Rice Increases Profitability in Bangladesh

Posted on Bangladesh-news, News - Homepage, News & Announcements, October 27, 2017

DHAKA, Bangladesh (CSISA) – The Cereal Systems Initiative for South Asia (CSISA) recently organized field demonstrations to show how using direct-seeded rice (DSR) instead of transplanting rice crops not only minimizes water use but also reduces production cost and increases profitability. This event created significant awareness of, and interest in, DSR technologies among policymakers and farmers.

Bangladesh has attained self-sufficiency in rice production, according to the Bangladesh Bureau of Statistics (BBS). In 2015–16, rice occupied 74% of the country’s total cropped area, 15.44 million hectares, and total paddy (rough rice) production was 52 million tons.

Sustaining rice self-sufficiency will require the country to produce about 20 percent more, or 10 million more tons of paddy, by 2025 to feed the expected population of 169 million people. This increase must occur despite the steady decline in cultivated land area, reduction in availability of groundwater, declining profitability and increasingly erratic climate.

In Bangladesh, rice grows throughout the year in three seasons popularly known as Aus (March–July), Aman (June–November) and Boro (November–May), with the majority of production occurring in the Boro season. Rice in Aus and Aman is mainly rainfed but fully irrigated during Boro. More than 80% of irrigated areas rely on groundwater, which is decreasing over time due to unregulated use, leading to a lack of irrigation water at the end of the Boro season across a large part of the country and driving up irrigation costs, reducing the profitability of Boro rice.

Diversifying cropping and production systems with nutritious and low water crops would save groundwater, but could reduce the total volume of rice production. To minimize rice shortages, previously uncultivated areas during Aus and Aman seasons may need to be cultivated.

Considering the important contribution of Aus rice to Bangladesh’s rice production levels, CSISA began testing mechanized DSR during the 2016 Aus season on 17 hectares in the United States Agency for International Development’s Feed the Future Zone in southern Bangladesh.

Based on the successful results of the use of this technology, CSISA began an awareness campaign for farmers, stakeholders and policymakers. High-level officials of the Bangladesh Rice Research Institute (BRRI) and the Department of Agricultural Extension (DAE) visited the DSR fields and exchanged ideas with farmers.

The promotion of mechanized Aus DSR directly supports the government priority to increase Aus cultivation and farm mechanization. Both public and private organizations have shown significant interest in Aus DSR and a willingness to work with CSISA.

CSISA has therefore targeted this region for DSR rice in Aus season where over 400 two-wheel tractor-based direct sowing machines are currently in use by service providers, and another 500 units are shipping to Bangladesh from CSISA partner RFL, an agricultural machinery importer and manufacturer.

CSISA will work with BRRI, DAE, non-government organizations and machinery dealers to further raise awareness of DSR technology, aggregate farmer demand for emerging service providers, and scale out the technology. CSISA will facilitate market linkages to ensure quality inputs, particularly seeds and herbicides and with millers and traders to help farmers sell their rice.

The wider dissemination and adoption of DSR in Aus will save water use, reduce labor requirements, lower production cost, and increase the profitability of rice farming.

The Cereal Systems Initiative for South Asia is led by the International Maize and Wheat Improvement Center and implemented jointly with the International Food Policy Research Institute and the International Rice Research Institute.

This article was authored by M. Murshedul Alam, Sharif Ahmed and Humnath Bhandari

Photos credit: Md. Khairul Islam Rony


Copyright © 2017 CIMMYT

CSISA Website

Disclaimer

While every precaution has been taken in the preparation of this website and its contents, CIMMYT and its implementing partner organizations for CSISA – IFPRI and IRRI – assume no responsibility for errors or omissions. All information and features described herein are subject to change without notice. This website may contain links to third-party websites. CIMMYT is not responsible for the contents of any linked site or any link contained in a linked site. This website is providing these links only as a convenience, and the inclusion of a link does not imply endorsement by CIMMYT of the linked sites or their content.

Terms of Use

Copyright © 2017 International Maize and Wheat Improvement Center (CIMMYT)
CIMMYT holds the copyright to all CSISA publications and web pages but encourages use of these materials for non-commercial purposes, unless specifically stated otherwise. Permission to make digital or hard copies of part or all of this work for personal or classroom use is hereby granted without fee and without a formal request provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. For copyrights not owned by CIMMYT, express permission must be pursued with the owner of the information. To republish or redistribute for commercial purposes, prior permission is required.