Creating impact through wider data sharing, a training by CSISA in Bihar

Posted on India-news, News - Homepage, September 30, 2020

Bihar Convergence Platform for agriculture since being established in October 2019, is consistently working to accelerate the interventions in improving the lives and capacity of small and marginal farmers in the state.

Platform member participants interacting during the training.

The Convergence Platform chaired by the Vice Chancellor Bihar Agriculture University, with key members from Bihar Rural Livelihood Promotion Society known as Jeevika, Bihar Agriculture University, Dr Rajendra Prasad Central Agriculture University, Agriculture Technology Application Resource Institute, ICAR-RCER, Cereal Systems Initiative for South Asia (CSISA) along with private groups like IFFCO, Bayer, and ITC, is a synergistic partnership to innovate and initiate targeted interventions that help farmers to have informed choices with proven scientific recommendations.

Data Ecosystem: Out of the many activities jointly implemented by the platform, “Data Ecosystem” is the key arena where the platform works together in strengthening the impact of data, and incorporating them in accelerating quality interventions for farmers.

Recently, a six-day virtual interactive training for convergence members on the theme ‘creating impact through wider data sharing’ was hosted by CSISA in association with CAB-International and ODI in September (16-23 September). The thematic areas of the training aimed at strengthening technical expertise of the participants; creating an enabling environment to unlock the benefits of data sharing and developing space for participants to discuss, brainstorm and co-design initiatives to be implemented together by the convergence platform members in coming days.

23 participants attended the training from Bihar Agriculture University, Jeevika, Dr Rajendra Prasad Central Agriculture University, ICAR-RCER, Agriculture Technology Application Resource Institute and IFFCO. On the first day, sharing the objective of the training with participants Dr Ram Kanwar Malik, Senior Scientist and Sugandha Munshi, Senior Specialist, from CSISA emphasised on the need and importance of sharing data for larger benefits to farmers. Dr David Torrent from Open Data Institute led the training, with Arun Jadhav from CABI and CSISA team coordinating the proceedings of the day.

The training was divided into six sub-themes – 1) Data sharing: Strategies for change and barriers to succeed; 2) Building data sharing agreements; 3) Dealing with personal data; 4) Minimising harmful impacts from data; 5) Improving the quality and interoperability of data and, 6) Building healthy data ecosystems. During each of the sessions under the six sub-themes participants engaged in a series of interactive discussions and group activities focused on shared goal and partnerships.

On the sixth day, the training came to an end with a common understanding about the challenges and constraints in agriculture existing due to the data being in silos. Furthermore to accelerate the pace of development in agriculture in the state, the participants mutually agreed on the need to relook at the existing data with a broader lens. Sharing the data under set norms with standardised licensing could act as a catalyst to increase the benefits for smallholder farmers, expressed participants.

To deal with the challenges in agriculture constructively and together, the platform members stressed strongly on the need to start seeing and analysing existing data from a wider perspective and on sharing data as the key for designing fact-based interventions for larger good and impact.


Mechanized Harvesting Fuels Rural Prosperity in Nepal

Posted on CSISA Success Story, Nepal-news, News - Homepage, News & Announcements, July 21, 2020

Farmers are turning to two-wheeled tractor-mounted reaper-harvesters to make up for the lack of farm labor caused by a significant number of rural Nepalese — especially men and youth — migrating out in search of employment opportunities.

Over 4,000 mechanized reapers have been sold in Nepal with more than 50 percent in far and mid-west Nepal since researchers first introduced the technology five years ago. The successful adoption — which is now led by agricultural machinery dealers that were established or improved with CSISA’s support — has led nearly 24,000 farmers to have regular access to affordable crop harvesting services, said CIMMYT agricultural economist Gokul Paudel.

Read the full article in Agrilinks

Drought management for smallholder farmers in Nepal’s Terai region

Posted on Nepal-news, News - Homepage, News & Announcements, Uncategorized, July 19, 2020

CSISA project suggests pathways to remove barriers inhibiting full use of groundwater irrigation infrastructure.

A farmer in Banke district during monsoon season drought in 2017. Photo credit: Anton Urfels (CIMMYT)

Inconsistent rainfall has repeatedly damaged paddy crops in Nepal over the last years, even though most agricultural lands are equipped with groundwater wells, contributing to missed national policy targets of food self-sufficiency and slow growth in cereal productivity. In a recently published article, Cereal Systems Initiative for South Asia (CSISA) researchers explore the drivers of smallholder farmers’ underuse of groundwater wells to combat in-season drought during the monsoon rice season in Nepal’s breadbasket — the Terai.

The study finds that several barriers inhibit full use of the groundwater irrigation infrastructure and proposes support pathways based on existing technologies.

A key issue is farmers’ tendency to schedule irrigation very late in an effort to save the crops when in-season drought occurs. By this time, rice crops have already been damaged by lack of water and yields will be decreased. High irrigation costs, especially when pumping equipment is rented at monopolistic rental rates, are a major factor of this investment aversion. In addition, private irrigation is a relatively new technology for many farmers making productive water use decisions.

After deciding to irrigate, queuing for pumpsets, tubewells, and repairs and maintenance further increase irrigation delays. Some villages have only a handful of pumpsets or tubewells shared between all households, so it can take up to two weeks for everybody to irrigate.

CSISA provides three suggestions for three spatially nested support pathways to address these issues and support farmers in combatting monsoon season drought.

  1. Raising awareness on the importance of timely irrigation

To avoid yield penalties and improve operational efficiency through better matched pumpsets, CSISA has raised awareness through agricultural FM radio broadcasts on the strong relationship between water stress and yield penalties. Messages highlight the function of the plough pan to keep infiltration rates low and encourage farmers to improve irrigation scheduling. Anecdotal evidence suggests that improved pump selection may decrease irrigation cost by up to 50%, and CSISA has initiated follow-up studies to develop recommendations for farmers.

In addition, timely irrigation often requires social interaction in purchasing fuel, transporting and installing pumps or shared use of irrigation equipment. These activities pose risks of COVID-19 exposure and transmission and therefore require farmers to follow safety and hygiene practices, which may cause further delays to irrigation. Raising awareness about the importance of timely irrigation therefore needs to go hand in hand with safe and hygienic irrigation practices. This information has been streamlined into the CSISA ongoing partnerships and FM broadcasts

2. Improving community-level water markets through increased focus on drought preparedness and overcoming liquidity constraints

Farmers can save time by taking an anticipatory approach to terms and conditions of rentals, instead of negotiating them when cracks in the soil are already large. Many pump renters also reported that pump owners are reluctant to rent out pumpsets if renters cannot pay up front. Given the seasonality of cash flows in agricultural, pro-poor and low interest credit provisions are likely to further smoothen community-level water markets.

3. Regional investment prioritization

Selectively targeting support and promotion programs in areas experiencing delays in access to pumpsets and groundwater wells can help farmers in combating monsoon season droughts.




Quantified ethnographic-decision tree based on households’ surveys of smallholder decision to use groundwater irrigation in Nepal’s Terai. Source: Urfels et al. (2020)

Furthermore, the study shows that these delay factors differ across districts and that selectively targeted interventions will be most useful to provide high returns to investments. For example, farmers in Kailali reported that land access issues due to use of large bullock carts to transport pumpsets and fuel shortages constitute a barrier for 10% and 39% of the farmers, while in Rupandehi maintenance and tubewell availability were reported to be of greater importance.

As drought is increasingly threatening paddy production in Nepal’s Terai region, CSISA’s research shows that several support pathways exist to support farmers in combatting droughts. Sustainable water use can only be brought up to a scale where it benefits most farmers if all available tools including electrification, solar pumps and improved water level monitoring are deployed to provide benefits to a wide range of farmers.

Read the full article in Water International:

Anton Urfels, Andrew J. McDonald, Timothy J. Krupnik & Pieter R. van Oel (2020) Drivers of groundwater utilization in water-limited rice production systems in Nepal, Water International, 45:1, 39-59, DOI: https://doi.org/10.1080/02508060.2019.1708172

Convergence platform led by CSISA and partners strengthen collaborative delivery systems in Bihar agriculture

Posted on CSISA Success Story, India-news, News - Homepage, News & Announcements, July 12, 2020

CSISA, JEEViKA and the Bihar Agriculture University are catalysing sustainable solutions for farmers, which are empowering them (small and marginal farmers including women) to secure more prosperous lives.

Between November and December 2019, through the ‘Single Agro -Advisory Window’ set up under this convergence platform, 1,055,000  farmers were reached with agro advisories, through text and voice messages  and printed advisories; wherein  400,000 farmers were reached through the Bihar Agricultural University and 655,000 through Jeevika’s dissemination platforms.

Read full article here

Evidence that Mung Beans Strengthen Nepal’s Farm Systems

Posted on CSISA Success Story, Nepal-news, News - Homepage, News & Announcements, May 28, 2020

Mung bean cleaning process at Poshan Food Product, in Butwal, Nepal. Photo credit: CSISA Archive 2020

A long-term study by the International Maize and Wheat Improvement Center (CIMMYT) shows that mung beans, a month-long leguminous crop commonly known as green gram, strengthen rice-wheat farming systems and livelihoods in Nepal.

According to Narayan Khanal, a researcher who works with the Cereal Systems Initiatives for South Asia (CSISA), growing evidence indicates mung beans planted between rice and wheat rotations improves soil fertility and rice productivity by as much as 25 percent.

Rice-wheat rotation is the dominant cropping pattern in many regions of Nepal. With wheat harvest in March followed by rice transplanting in July, a substantial amount of land remains fallow for about 90 to 100 days. Since 2014, CSISA researchers have worked to fill the gap by bringing value chain actors together to promote the use of disease-tolerant and high-yielding mung bean varieties, conservation agriculture techniques, and agricultural mechanization such as direct seeders.

“Over the years our research has included market mapping with value chain actors, testing mung bean varieties in the private sector by engaging seed companies and millers, as well as building the capacity of farmers to grow demand,” says Khanal. “The legume provides a cash crop for farmers with its stable, high market price and demand across Asia.” 

An annual vine with yellow flowers and fuzzy brown pods, mung bean crops usually trade at $1 per kilo in rural Nepal.

Khanal also adds that the long-term results show mung bean crop residue provides fodder to feed live-stock and improve soil fertility as it is incorporated into the field to be used as fertilizer as part of conservation agriculture practices.

Read the full article published in Agrilinks here.

Online news portal features DSR promotion by CSISA in Nepal

Posted on Nepal-news, News - Homepage, News & Announcements, May 27, 2020

An online news portal in Nepal issued a short article about direct-seeded rice (DSR) promoted by CSISA in Kailali District, Sudurpashchim Province in Nepal.

The article highlights the introduction of DSR six years back by CSISA and how it has expanded throughout the district. Khagendra Sharma, Spokesperson of Ministry of Land Management, Agriculture & Cooperative of Sudurpaschim Province, mentions that DSR is more profitable than conventional rice farming, hence farmers are attracted to this technology as it reduces labor and fuel.

Read the full article in Nepali here.

New project strengthens capacity to fight fall armyworm in Bangladesh

Posted on Bangladesh-news, News - Homepage, January 30, 2020

Public and private partners join forces to mitigate voracious pest.

Hundreds of agricultural professionals in Bangladesh were trained in the latest fall armyworm management strategies as part of a new project that will strengthen efforts against this threat to farmers’ income, food security, and health. The new project, Fighting Back Against Fall Armyworm, is supported by USAID and the University of Michigan.

As part of the project, last November over 450 representatives from government, nonprofits and the private sector participated in three-day training to learn how to identify, monitor and apply integrated pest management approaches.

Fall armyworm presents an important threat to farmers’ income, food security and livelihoods as it continues to spread across the country, in addition to health risks if toxic insecticides are indiscriminately used, said Tim Krupnik, senior scientist and agronomist at the International Maize and Wheat Improvement Center (CIMMYT). It is anticipated the course participants will pass on knowledge about the pest and appropriate control practices to around 30,000 farmers in their respective localities.

“Participants were selected for their ability to reliably extend the strategies that can be sustainably implemented by maize farmers across the country,” explained Krupnik. “The immersive training saw participants on their hands and knees learning how to scout, monitor and collect data on fall armyworm,” he said. “They were also trained in alternatives to toxic chemical pesticides, and how and when to make decisions on biological control with parasitoids, bio-pesticides, and low-toxicity chemical pesticide use.”

Following its ferocious spread across Africa from the Americas, fall armyworm first attacked farms in Bangladesh during the winter 2018-2019 season. Combined with highly apparent damage to leaves, its resilience to most chemical control methods has panicked farmers and led researchers to promote integrated pest management strategies.

In this context, the 22-month Fighting Back Against Fall Armyworm project will build the capacity of the public and private sector for effective fall armyworm mitigation.

The hungry caterpillar feeds on more than 80 plant species, but its preferred host is maize — a crop whose acreage is expanding faster than any other cereal in Bangladesh. The pest presents a peculiar challenge as it can disperse over 200 kilometers during its adult stage, laying thousands of eggs along its way.

Once settled on a plant, larvae burrow inside maize whorls or hide under leaves, where they are partially protected from pesticides. In a bid to limit fall armyworm damage, farmers’ indiscriminate application of highly toxic and inappropriate insecticides can encourage the pest to develop resistance, while also presenting important risks to beneficial insects, farmers, and the environment.

Reaching every corner of the country

Participants of the Fighting Back against Fall Armyworm trainings visit farmers’ fields in Chauadanga, Bangladesh. (Photo: Tim Krupnik/CIMMYT)
Participants of the Fighting Back against Fall Armyworm trainings visit farmers’ fields in Chauadanga, Bangladesh. (Photo: Tim Krupnik/CIMMYT)

As part of the project, CIMMYT researchers supported Bangladesh’s national Fall Armyworm Task Force to develop an online resource to map the spread of fall armyworm. Scientists are working with the Ministry of Agriculture to digitally collect real-time incidents of its spread to build evidence and gain further insight into the pest.

“Working with farmers and agricultural agencies to collect information on pest population and incidence will assist agricultural development planners, extension agents, and farmers to make informed management decisions,” said Krupnik, who is leading the project.

A key objective is to support national partners to develop educational strategies to facilitate sustainable pest control while also addressing institutional issues needed for efficient response.

“In particular, the Government of Bangladesh has been extremely responsive about the fall armyworm infestation and outbreak. It developed and distributed two fact sheets — the first of which was done before fall armyworm arrived — in addition to arranging workshops throughout the country. Initiatives have been taken for quick registration of microbial pesticides and seed treatments,” commented Syed Nurul Alam, Entomologist and Senior Consultant with CIMMYT.

“It is imperative that governmental extension agents are educated on sustainable ways to control the pest. In general, it is important to advise against the indiscriminate use of pesticides without first implementing alternative control measures, as this pest can build a resistance rendering many chemicals poorly effective,” Krupnik pointed out.

To this end, the project also consciously engages members of the private sector — including pesticide and seed companies as well as agricultural dealers — to ensure they are able to best advise farmers on the nature of the pest and suggest sustainable and long-term solutions. To date, the project has advised over 755 agricultural dealers operating in impacted areas of Bangladesh, with another 1,000 being trained in January 2020.

Project researchers are also working alongside the private sector to trial seed treatment and biologically-based methods of pest control. Biocontrol sees researchers identify, release, and manage natural predators and parasitoids to the fall armyworm, while targeted and biologically-based pesticides are significantly less of a health risk for farmers, while also being effective.

The 22-month project, funded by USAID, has 6 key objectives:

  • Develop educational materials to aid in reaching audiences with information to improve understanding and management of fall armyworm.
  • Assist the Department of Agricultural Extension in deploying awareness raising and training campaigns.
  • Prepare the private sector for appropriate fall armyworm response.
  • Standing task force supported.
  • Generate data and evidence to guide integrated fall armyworm management.

The Fighting Back Against Fall Armyworm in Bangladesh project is aligned with Michigan State University’s Borlaug Higher Education for Agricultural Research and Development (BHEARD) program, which supports the long-term training of agricultural researchers in USAID’s Feed the Future priority countries.

To achieve synergies and scale, the project will also be supported in part by in-kind staff time and activities, through linkages to the third phase of the USAID-supported Cereal Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Centre (CIMMYT). CSISA and CIMMYT staff work very closely with Bangladesh’s Department of Agricultural Extension and the Bangladesh Maize and Wheat Research Institute (BWMRI) in addition to other partners under the Ministry of Agriculture.

Author: Matthew O’Leary

Also available in CIMMYT’s site: https://www.cimmyt.org/news/new-project-strengthens-capacity-to-fight-fall-armyworm-in-bangladesh/

New policy brief highlights opportunities to promote balanced nutrient management in South Asia

Posted on CSISA Success Story, Nepal-news, News - Homepage, News & Announcements, Uncategorized, December 9, 2019

Dr. Yubak Dhoj GC, Secretary, Ministry of Agriculture and Livestock Development, Nepal, introducing the ‘Development of Balanced Nutrient Management Innovations in South Asia’ workshop implemented by the USAID/Washington supported Cereal Systems Initiative for South Asia (CSISA) and USAID/Nepal supported Nepal Seed and Fertilizer (NSAF) projects.

Over the last few decades, deteriorating soil fertility has been linked to decreasing agricultural yields in South Asia, a region marked by inequities in food and nutritional security.

As the demand for fertilizers grow, researchers are working with government and business to promote balanced nutrient management and the appropriate use of organic amendments among smallholder farmers. A new policy brief outlining opportunities for innovation in the region has been published by the Cereal Systems Initiative for South Asia (CSISA).

Like all living organisms, crops need access to the right amount of nutrients for optimal growth. Plants get nutrients like nitrogen, phosphorus, and potassium, in addition to other crucially important micronutrients from soils and carbon, hydrogen, oxygen from the air and water. When existing soil nutrients are not sufficient to sustain good crop yields, additional nutrients must be added through fertilizers or manures, compost or cop residues. When this is not done, farmers effectively mine the soil of fertility, producing short-term gains, but undermining long-term sustainability.

Nutrient management involves using crop nutrients as efficiently as possible to improve productivity while reducing costs for farmers, and also protecting the environment by limiting greenhouse gas emissions and water quality contamination. The key behind nutrient management is appropriately balancing soil nutrient inputs – which can be enhanced when combined with appropriate soil organic matter management – with crop requirements. When the right quantities are applied at the right times, added nutrients help crops yields flourish. On the other hand, applying too little will limit yield and applying too much can harm the environment, while also compromising farmers’ ability to feed themselves or turn profits from the crops they grow.

Smallholder farmers in South Asia commonly practice poor nutrition management with a heavy reliance on nitrogenous fertilizer and a lack of balanced inputs and micronutrients. Declining soil fertility, improperly designed policy and nutrient management guidelines, and weak fertilizer marketing and distribution problems are among the reasons farmers fail to improve fertility on their farms. This is why it’s imperative to support efforts to improve soil organic matter management and foster innovation in the fertilizer industry, and find innovative ways to target farmers, provide extension services and communicate messages on cost effective and more sustainable strategies for matching high yields with appropriate nutrient management.

Cross-country learning reveals opportunities for improved nutrient management.

The policy brief is based on outcomes from a cross-country dialogue facilitated by CSISA earlier this year in Kathmandu. The meeting saw researchers, government and business stakeholders from Bangladesh, India, Nepal, and Sri Lanka discuss challenges and opportunities to improving farmer knowledge and access to sufficient nutrients. Several key outcomes for policy makers and representatives of the agricultural development sector were identified during the workshop, which included in the brief.

Extension services as an effective way to encourage a more balanced use of fertilizers among smallholder farmers.

There is a need to build the capacity of extension to educate smallholders on a plant’s nutritional needs and proper fertilization. It also details how farmers’ needs assessments and human-centered design approaches need to be integrated while developing and delivering nutrient application recommendations and extension materials.

Nutrient subsidies must be reviewed to ensure they balance micro and macro-nutrients.

Cross-country learning and evidence sharing on policies and subsidies to promote balanced nutrient application are discussed in the brief, as is theneed to balance micro and macro-nutrient subsidies, in addition to the organization of subsidy programs in ways that assure farmers get access the right nutrients when and where they are needed the most. The brief also suggests additional research and evidence are needed to identify ways to assure that farmers’ behaviour changes in response to subsidy programs.

Market, policy, and product innovations in the fertilizer industry must be encouraged.

It describes the need for blended fertilizer products and programs to support them. A blend is made by mixing two or more fertilizer materials. For example, particles of nitrogen, phosphate and small amounts of secondary nutrients and micronutrients mixed together. Experience with blended products are uneven in the region, and markets for blends are nascent in Bangladesh and Nepal in particular. Cross-country technical support on how to develop blending factories and markets could be leveraged to accelerate blended fertilizer markets and to identify ways to ensure equitable access to these potentially beneficial products for smallholder farmers.

Read and download the policy brief here.

Digital warning system boosts resilience in Bangladesh, Brazil

Posted on Bangladesh-news, CSISA Success Story, News - Homepage, News & Announcements, November 29, 2019

Farmers around the world face consistent threat from crop pests, such as wheat blast disease that attacks maturing grains causing them to shrivel and reduce farmers’ yields.  But new advances in technology and modeling are making it easier to identify, prevent and control these diseases.

Outbreaks of wheat blast in South Asia – a region where people consume over 100 million tons of wheat each year – have an enhanced impact on food stability and income security. In 2016, wheat blast struck South Asia unexpectedly, with crop losses in Bangladesh averaging 25 to 30 percent, threatening progress in the region’s food security efforts. Estimates are that blast could reduce wheat production by up to 85 million tons in Bangladesh, equivalent to $13 million in foregone farmers’ profits each year when outbreak occurs.

That’s why there’s optimism from farmers and scientists alike about a new digital early warning system that integrates mathematical models that, when combined with weather forecasts, can simulate disease growth and risks to forewarn against potential wheat blast outbreaks. With three years of data recorded, the system, which was originally piloted in Brazil where wheat blast has been a concern for several decades, is now being rolled out across Bangladesh to deliver real-time disease updates to extension workers and smallholder farmers via SMS and voice message.

“Through collaborative research we have established a model to identify areas at risk of wheat blast infection with five days advanced warning,” said Timothy J. Krupnik, senior scientist and systems agronomist at the International Maize and Wheat Improvement Centre (CIMMYT). “It can provide Bangladesh’s 1.2 million wheat farmers a head start against this disease.”

This data-driven early warning system analyzes environmental conditions for potential disease development in crucial wheat growing areas of Bangladesh and Brazil. Through this information, the system generates forecast maps and automatic advice for farmers of where and when infection is most likely to strike.

“The model was originally developed in Brazil, but we have worked closely with collaborators from Brazil and the Bangladesh Meteorological Department (BMD) and Department of Agricultural Extension to develop a warning system positioned for use by extension workers and farmers,” Krupnik said.

Currently, farmers are advised to apply fungicides on a calendar-based preventative basis. This is costly and can have negative environmental effects. Instead, the early warning system pushes advice to extension agents and farmers, indicating when disease control is really needed.

“Our hope is that it will help reduce unnecessary fungicide use while assuring that farmers can implement cost-effective and resilient practices to overcome wheat blast risks” Krupnik said.

The importance of collaboration

With limited information on wheat blast, Krupnik initiated a collaboration with agricultural researchers in Brazil – where the disease originated in 1985. Professor Jose Mauricio Fernandes, a crop pathologist from Embrapa, and Mr. Felipe de Vargas, a computer scientist, with Universidade de Passo Fundo, were familiar with wheat blast and had already developed an initial mathematical model of disease development. The team collaborated to transfer the model to South Asia and build it into a more comprehensive and location-explicit early warning system.

“We improved preliminary modelling framework to manage data requirements to predict the time and location of blast outbreaks in Bangladesh, Brazil, and beyond,” Fernandes said. “I am excited to see how it increases farmers’ resilience to disease risks in Bangladesh.”

The team plan to adapt the system to help manage other pests threatening farmers in Feed the Future countries, including initial efforts in Nepal where a complementary UK Aid investment through the Asia Regional Resilience to a Changing Climate (ARRCC) is supporting CIMMYT to scale-out the model and to include wheat rust disease early warnings.

Author: Matthew O’Leary, CIMMYT

These efforts were supported by the USAID funded Climate Services for Resilient Development Project (CSRD) in South Asia, the USAID/Feed the Future and Bill and Melinda Gates Foundation supported Cereal Systems Initiative for South Asia (CSISA), and by the CGIAR Platform for Big Data in Agriculture.

Traveling Seminar on Scale-Appropriate Machinery Brings Together Delegates from across Asia

Posted on Nepal-news, News - Homepage, News & Announcements, May 5, 2019

Seminar delegates observing combine harvesters with farmers in Rupandehi, Nepal.
Photo: V. Dakshinamurthy/CIMMYT

CSISA in Nepal organized a three-day traveling seminar on “Scale-appropriate machinery for cereal crop harvesting in South Asia” on March 25–29, 2019. In Nepal, the adoption of agricultural mechanization has increased slowly over time. While small, regional markets for combine harvesters have existed in Nepal for the last 20 years, the major rise in sales has occurred in the last 10 years, both for combines and, more recently, for two-wheel tractor-based reaper-harvesters. Farmers have used machinery to cope with labor shortages and increasing wage rates.

Over 40 delegates, including international experts, private sector scaling partners and dignitaries such as the Director General of Nepal’s Department of Agriculture and Chief of the Prime Minister Agriculture Modernization Project attended the event. Participants visited a variety of CSISA sites and project partners across Nepal’s Terai. Field visits, demonstrations and discussions with farmers and service providers began in Rupandehi district and proceeded to Kailali district, with several in-between stops. 

Delegates observed technologies being used in farmers’ fields and discussed progress-to-date to mechanize cereal production in Nepal and more broadly across Asia. Participants saw Nepal’s scale-appropriate, private sector-led mechanization in farmers’ fields, including the use of large combine harvesters and self-propelled reapers in Rupandehi and the recent spread of thousands of two-wheel tractor reapers in Banke, Bardiya and Kailali. Delegates discussed issues with farmers who use the services of machinery service providers, service providers themselves, machinery importers and sales agents. 

On the last day of the traveling seminar, delegates from China, Bangladesh, India, Sri Lanka and Vietnam shared their views on how different types of farm machines are spreading in their countries. These discussions and presentations included private and public sector representatives interested in finding sustainable, equitable, and productive solutions to grain harvesting challenges for all farm sizes and farmers across the region. Professor Ding Qishuo, College of Engineering, Nanjing Agricultural University, recalled his experience in southern China 20–30 years ago and found similarities with Nepal’s Terai, where “a huge gap in rural manual labor may need to be filled by machinery”. Prof. Ding stated that there is a large opportunity for promoting mechanized harvesting in the region; however, there is still much left to do to document and quantify local farming systems. According to Prof. Ding, “many lessons can be learned from other Asian countries and applied to Nepal’s farming systems”.

Participants of the traveling seminar on “Scale-appropriate machinery for cereal crop harvesting in South Asia” Photo: V. Dakshinamurthy/CIMMYT

Stempedia Model: Fighting Blight in Lentil

Posted on CSISA Success Story, Nepal-news, News - Homepage, News & Announcements, Uncategorized, February 7, 2019

Scientists, in collaboration with CSISA, help farmers practice integrated disease management with the help of the weather-based Stempedia model.

Stemphylium blight is one of the most damaging diseases that plagues lentil fields in South Asia, causing plants to shed leaves and loose twigs, ultimately leading to grain loss. In severe cases, yield losses as high as 90% have been reported in Bangladesh and other countries. Lentil production is an integral part of many nutrition-sensitive farming systems in the region, so Stemphylium blight is a threat to smallholder farmers’ livelihoods in Bangladesh, India and Nepal.

Disease severity is conditioned by cloudy weather, relative humidity, and temperature and precipitation regimes. It may vary between locations within a growing season and also between seasons within a location. If foliar fungicides are carefully used in combination with a suite of integrated pest management practices, the disease can be controlled. However, farmers often find it difficult to determine the timing, frequency and amount of fungicide they should use. This requires special consideration because fungicides can affect yield and have negative environmental consequences if used improperly. The Stempedia model, a weather-based model used to assess the risks of Stemphylium blight disease, is being processed to help farmers decide when and how much fungicide to use to appropriately control Stemphylium blight.

The Cereal Systems Initiative for South Asia (CSISA) has entered into a collaboration with the Climate Services for Resilient Development (CSRD) project, both supported by USAID/Washington, to enable national scientists and extension officers in Bangladesh, India and Nepal to test the Stempedia model and assess the regional and seasonal risks of Stemphylium blight occurring. Partner scientists and officers collect data in farmers’ fields, assess the severity of the problem and pass those data to CSRD for Stempedia model testing and calibration. The huge task of collecting field data would have been impossible without the collaboration between CSISA and CSRD.
CSISA and CSRD mobilized national partners and collected data on the incidence and severity of Stemphylium blight during the 2017-18 growing season from 480 farmers’ fields in three countries: in Bangladesh with support from the Department of Agricultural Extension, in India with the help of Bihar Agricultural University, and in Nepal with the support of Nepal Agricultural Research Council’s National Grain Legume Research Program.

The status of Stemphylium blight was assessed before harvest and the results indicated that it was more prevalent in the Bangladesh and Nepal sites than in the India sites. Relevant weather data, available from five sites, were used to run the Stempedia model, and preliminary results showed that the model had the potential to mimic the status of the disease observed in the fields.

The Stempedia model is currently being calibrated to achieve prediction accuracy, and more data from a similar number of fields in the three countries are being collected in the 2018-19 growing season for comprehensive model refinement. The ultimate goal is to set up the model to analyze weather forecasts and train national extension partners to use Stempedia so they can better advise farmers.

Speaking about the Stempedia model, Dr. Anurag Kumar of CSISA, Bihar, India, said, “Farmers in Bihar had no clue how to control the disease and had been blindly using chemicals for controlling Stemphylium blight. This model will guide farmers on when to use fungicides or whether to use them at all.” Once it is successfully calibrated and refined, the Stempedia model will be used to provide weekly early warnings on the risk of the disease. Based on the forecasts, national extension agencies will develop relevant advisories and extend them to farmers.

Authors: M. Shahidul Haque Khan, CIMMYT and Sultana Jahan, CIMMYT

New Infographics Illustrate Impact of Wheat Blast

Posted on Bangladesh-news, News - Homepage, News & Announcements, February 7, 2019

Wheat blast is a fast-acting and devastating fungal disease that threatens food safety and security in the Americas and South Asia.

First officially identified in Brazil in 1984, the disease is widespread in South American wheat fields, affecting as much as 3 million hectares in the early 1990s.

 In 2016, it crossed the Atlantic Ocean, and Bangladesh suffered a severe outbreak. Bangladesh released a blast-resistant wheat variety—developed with breeding lines from the International Maize and Wheat Improvement Center (CIMMYT)—in 2017, but the country and region remain extremely vulnerable.

The continued spread of blast in South Asia—where more than 100 million tons of wheat are consumed each year—could be devastating.

Researchers with the CIMMYT-led and USAID-supported Cereal Systems Initiative for South Asia (CSISA) and Climate Services for Resilient Development (CSRD) projects partner with national researchers and meteorological agencies on ways to work towards solutions to mitigate the threat of wheat blast and increase the resilience of smallholder farmers in the region. These include agronomic methods and early warning systems so farmers can prepare for and reduce the impact of wheat blast.

This series of infographics shows how wheat blast spreads, its potential effect on wheat production in South Asia and ways farmers can manage it.   

CIMMYT and its partners work to mitigate wheat blast through projects supported by U.S. Agency for International Development (USAID), the Bill and Melinda Gates Foundation, the Australian Centre for International Agricultural Research (ACIAR), Indian Council for Agricultural Research (ICAR), CGIAR Research Program on WHEAT, and the CGIAR Platform on Big Data

See more on wheat blast here: https://www.cimmyt.org/wheat-blast/

Seeing is Believing: Videos Increase Uptake of New Technologies

Posted on Bangladesh-news, CSISA Success Story, News - Homepage, News & Announcements, February 7, 2019

Discussions on the video show of yield enhancing practices such as healthy rice seedling production and early wheat sowing throughout southern Bangladesh
(Photo: M. Shahidul Haque Khan, CIMMYT)

The Cereal Systems Initiative for South Asia (CSISA), in collaboration with the Bangladeshi NGO Agricultural Advisory Society (AAS), recently conducted video showings of yield-enhancing practices such as healthy rice seedling production and early wheat sowing throughout southern Bangladesh. Early wheat sowing and healthy rice seedlings are both key sustainable intensification practices in Bangladesh as early sowing helps wheat avoid terminal heat, which decreases yield, and the use of healthy seedlings ensures the rice crop has a strong start.

These shows were watched by a total of 110,825 farmers in 16 districts, including Jashore, Faridpur and Barishal, between October and December 2018.

Earlier CSISA had used video-based messaging as a tool to increase uptake of sustainable intensification practices, and it proved to be a reliable extension tool. A follow-up study of CSISA’s 2012 and 2015 screenings of agricultural production videos showed that of the 17,736 farmers who attended the video shows and training sessions, approximately 51% continued to use better-bet agronomic management techniques to grow healthy rice seedlings on 4,700 hectares in the winter (boro) season.Many of the farmers also carried forward the practices they learned from the video shows into the 2018 monsoon (aman) season, which resulted in 9,616 hectares being brought under healthy rice seedling practices.

CSISA’s survey results showed that adoption of healthy rice seedling growing techniques can be sustained if they are easily implemented, effective and productivity enhancing. At least 99% of the farmers who took part in the survey continued to use at least one practice, and others continued to implement a combination of new healthy rice seedling practices.

Locations where the videos have been shown in Bangladesh.

After the video screenings, audiences participated in question and answer sessions. During these interactions, farmers asked the organizers to clarify points that were unclear or to describe the benefits and costs of adopting new methods. Participants also shared other opinions or ideas that would increase the overall yield of rice and wheat.

The videos will be uploaded on CSISA’s website and those of its local partners, as well as on social media. This will help farmers who were unable to participate in the screenings easily access the videos through their mobile phones from anywhere in Bangladesh. Similar video showings are planned for the coming rabi season of 2019/20 to achieve an even wider reach.

Authors: Sultana Jahan, Mustafa Kamal, Harun-Ar-Rashid and M. Shahidul Haque Khan (CIMMYT)

Strategic Partnership Facilitates Mungbean Scaling in Nepal

Posted on CSISA Success Story, Nepal-news, News - Homepage, News & Announcements, Uncategorized, February 7, 2019

Millers and GATE Nepal discussing the mungbean grain quality demanded in the market
(Photo: Narayan Prasad Khanal, CIMMYT)

Mungbean is a relatively new crop in Nepal, so relevant research and development activities are still just emerging. In 2015, the Cereal Systems Initiative for South Asia (CSISA), supported by USAID, started conducting participatory research and development, including market development activities for mungbean in partnership with the National Grain Legume Research Program, millers and seed companies.

Mungbean, a short-duration crop of 60 to 80 days’ maturity, fits in well in a rice–winter crops–fallow rotation, reaching maturity just before rice transplanting in July. Mungbean is consumed as dal (soup), used as an ingredient for Dalmot (snacks), Bhujiya, sprouts, biscuits and baby food. Its biomass remains green even after the third picking, and rice yield can be increased by 25% if mungbean residue is incorporated into the soil. Unfortunately, cultivation of mungbean as a spring season crop is not widely practiced by farmers in Nepal.

In late 2018, CSISA facilitated a strategic partnership between Poshan Food Product (PFP) Ltd. (a miller), GATE Nepal (a seed company) and local agricultural cooperatives to strengthen the mungbean value chain and market. This partnership has been made possible because of an innovation by the miller in the process of making a baby food called Balbhojan.

The mungbean-containing baby food, “Balbhojan,” developed by Poshan Food Product Ltd.

Poshan Food Product Ltd. had always prepared Balbhojan by combining wheat, millet and buckwheat. While participating in a CSISA meeting in January 2017, the owner of Poshan Food Product, Mr. Narayan Gnawali, became aware of the health benefits of mungbean and changed the product’s recipe so that it would be composed of 20% mungbean. To fulfill his company’s new demand, he purchased 10 tons of mungbean grain from Banke and Bardiya districts in May 2017.

After changing the 1-kg and 0.5-kg packets of baby food to the new mungbean-containing mix, his company’s monthly demand for mungbean doubled within six months, and was four times higher by December 2018. Now the miller consumes 1.5 tons of mungbean every month, meaning that 18 tons of mungbean grain will be needed every year even if their current baby food business does not grow further.

In a recent CSISA meeting, Mr. Gnawali said, “I can buy up to 100 tons of mungbean if cooperatives or seed companies supply me properly graded products.” Now, GATE Nepal has agreed to provide mungbean-grading services using extra graders within the company. Poshan Food Product Ltd. has also started selling graded whole grain mungbean under the brand “Nepali Mung.” The product is used for sprout production and dal preparation.

Figure 1. Mungbean seed sales trend by GATE Nepal

Considering the increasing demand for sprouts in local supermarkets, Poshan Food Product Ltd. is also planning to produce mungbean sprouts starting this year. Seeing the success of the strategic partnership, the government of Nepal’s Province 7 has decided to provide extension support (e.g., seed, irrigation, plant protection) for mungbean growers within a 500 ha area under its soil health improvement program. CSISA continues to provide technical support on better-bet agronomy, mechanization and market development to strengthen the partnership and to support the scaling of mungbean cultivation.

Authors: Narayan P. Khanal, CIMMYT, and Dyutiman Choudhary, CIMMYT

Experts Identify Policy Gaps in Fertilizer Application in India

Posted on CSISA Success Story, India-news, News - Homepage, News & Announcements, Uncategorized, February 7, 2019

A farmer in Ara district, Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium.
(Photo: Dakshinamurthy Vedachalam, CIMMYT)

The application of fertilizers that do not meet the nutrient requirements (i.e. balanced nutrient application) of target crops is a widespread problem in India. Farmers overuse urea (N) and seldom apply secondary nutrients (Sulphur, Calcium, and Magnesium) and micro-nutrients (like Zinc, Iron, Copper, Boron, Molybdenum and Manganese) in their plots. This imbalanced application of nutrients affects both long-term health of the soil as well as farmers’ own net incomes from agriculture. How do we deploy scientific research, business innovations, and public policies and programs to help promote balanced use of fertilizers in Indian agriculture? As part of the Cereal Systems Initiative for South Asia (CSISA), the International Food Policy Research Institute (IFPRI) and the International Plant Nutrition Institute (IPNI) organized a National Dialogue on “Innovations for Promoting Balanced Application of Macro and Micro Nutrient Fertilizers in Indian Agriculture” on December 12, 2018, in New Delhi, India, to discuss practical answers to these questions.

 Farmer leaders, representatives from fertilizer cooperatives, private companies and the Fertilizer Association of India (FAI) participated in the dialogue along with state officials, researchers from national research institutions, CG centers, the World Bank and Indian think tanks to share their ideas and experience and explore new strategies. This dialogue initiated conversations on three themes: a) policy changes and other innovations needed to accelerate the development of new fertilizer blends; b) ways to develop a soil intelligence system for India, and c) changes in extension and communication of soil health information to farmers to enable the adoption of scientific recommendations.

The introductory session provided the necessary background and the context for the deliberations that followed. Avinash Kishore of IFPRI presented evidence on the myth of farmers being highly sensitive to changes in fertilizer prices. Using plot-level data from a large nationally representative sample of farmers, he showed that farmers’ demand for DAP and Potash did not change significantly, even after a steep increase in prices after a change in subsidy policy in 2011. Avinash contended that removal or rationalization of subsidies alone will not be enough to promote balanced use of fertilizers. Scientifically informed extension efforts would still be needed.

The Director General of the Fertilizer Association of India (FAI), Shri Satish Chander, pointed out that new-product approvals in India take approximately 800 days. However, he explained, this delay is not the biggest problem facing the sector: other barriers include existing price controls that are highly contingent on political myths.

Andrew McDonald of CIMMYT emphasized the need to develop a soil intelligence system for India and shared CSISA’s ongoing work on developing such a system for Andhra Pradesh and Bihar. In both states, scientists are working to combine the rich data already collected under the Soil Health Cards (SHC) program with spectroscopic measurement of soil properties and remote sensing images to create a rich array of information on soil and plant nutrition requirements customized to the specific needs of farmers and policymakers at a landscape level.

Dr. T. Satyanarayana of IPNI highlighted the importance of micronutrients in promoting balanced fertilization of soils and innovative methods that exist in determining soil health for appropriate action. Mr. Ajay Vir Jakhar, chairman of Punjab Farmers’ Commission, highlighted the need to strengthen the public extension system to bring scientific information to farmers.

Director General of FAI, Shri Satish Chander, averred that while approval of new fertilizer blends in India is slow and cumbersome, it is not the main hurdle to move innovation in India’s fertilizer sector. The Fertilizer Control Order (FCO) has undergone reforms over the years. While more reforms in the FCO will be helpful, price control and heavy subsidy on Urea, a large share of which, he said, goes to international fertilizer companies and not farmers, was the big problem in India’s fertilizer sector.

Other representatives from the fertilizer industry touched upon the need to identify farmer requirements for risk mitigation, labor shortages and site-specific nutrient management needs for custom fertilizer blends. Participants also discussed field evidence related to India’s soil health card scheme. Ultimately, discussions held at the roundtable helped identify relevant policy gaps.

Authors: Vartika Singh, IFPRI, and Vedachalam Dakshinamurthy, CIMMYT

Maize Farmers’ Groups: A Mechanism to Facilitate Strong Market Linkages

Posted on CSISA Success Story, India-news, News - Homepage, News & Announcements, February 7, 2019

Aggregated final produce of small maize farmers ready to be shipped in Odisha, India.
(Photo: Jitendriya Jena)

Since 2013, the Cereal Systems Initiative for South Asia (CSISA) has been sustainably intensifying kharif maize cultivation in a rainfed ecology on the north-central plateau of Odisha, India, in Mayurbhanj and Keonjhar districts. Through the promotion of better-bet agronomy (e.g., suitable hybrids, line planting, nutrient and weed management), maize yields of adopter farmers in Mayurbhanj and Keonjhar can reach 5.4 t/ha, up from an average of 2.5 t/ha.

In collaboration with the Odisha State Department of Agriculture, CSISA scaled up sustainable intensification practices on 5,227 hectares in 2018, from almost zero five years ago. Random cuttings by CSISA over the last three years on farmers’ fields showed that maize yields have consistently improved and become more uniform (as shown in the accompanying violin plot), both of which are required for farmers to strengthen their market linkages. Unfortunately, farmers have not been able to translate their increasing harvests into higher returns due poor linkages with output markets.

Although large institutional grain buyers such as hatcheries and feed mills are located nearby, in the past they were not interested in procuring maize grain locally because farmers produced a relatively small marketable surplus and grain quality was uneven. Efforts had been made earlier to improve maize grain marketing, but these efforts only partially succeeded because some interventions  were not equitable and some were not scalable. Private aggregator-based models favored middle marketing agents over farmers because prices at the farm gate were low compared to prices at the industry gate. Models focused on individual farmers generated high transactions costs at the buyers’ end. Therefore, a mechanism was still required that could ensure benefits to farmers but also be convenient for large buyers.

Before the 2018 maize planting season, CSISA held brainstorming sessions with the Odisha State Agriculture Marketing Board and the Department of Agriculture and Farmers’ Empowerment to devise a transparent, farmer-friendly, scalable marketing mechanism that would also be attractive to buyers.

In response to the discussions, CSISA began organizing the maize farmers into groups. The farmers’ groups cultivated maize on a consolidated patch, which helped ensure uniform cultivation practices and standardized postharvest activities. Training sessions and follow-up backstopping encouraged timely harvesting, mechanical threshing and adequate grain drying. These practices were essential for matching grain quality to industrial specifications (less than 14% grain moisture and not more than 1% fungus-infected grains).

The maize-producing groups had committed to selling their harvest together, in bulk. Prior to the maize-harvesting period (Oct. – Nov.), CSISA and the local administration convened a meeting of potential large buyers. At this meeting, buyers agreed to purchase the grain at US$ 240/ton (if grain quality meets standard industrial parameters), the Government of India’s current minimum support price.

In November 2018, Maa Ganga Maize Producer Group, composed of 20 women farmers, sold 22.3 tons of maize grain to the local hatchery and generated a gross revenue of US$ 5,330. Another group of 21 farmers sold 25 tons and made US$ 5,985. These amounts were shared amongt member farmers in proportion to the amount of grain they contributed. Venkateswara Hatcheries Pvt. Ltd., the biggest buyer of maize in the region, alone purchased more than 200 tons during the season. Other buyers then followed suit (information about total production and sales is currently being compiled). In contrast, farmers who had not joined a producer group sold their produce at around US$ 180/ton. CSISA plans to bring all maize growers of this area onto the same platform so that they can also obtain the economic gains that can be generated by adopting sustainable intensification practices.

Women farmers threshing their maize harvest in tribal part of Odisha, India.
(Photo: Wasim Iftikar)

Author : Ajay Anurag, CIMMYT

Soil Intelligence System for India Launched

Posted on CSISA Success Story, India-news, News - Homepage, News & Announcements, January 31, 2019

K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University (front), explains soil spectra during the opening of the soil spectroscopy lab at the Regional Agricultural Research Station in Tirupati, Andhra Pradesh.
(Photo: Dakshinamurthy Vedachalam, CIMMYT)

The Soil Intelligence System (SIS) for India, a new $2.5 million investment by the Bill & Melinda Gates Foundation, will help the states of Andhra Pradesh, Bihar and Odisha rationalize the costs of generating high-quality soil data while building accessible geospatial information systems based on advanced geostatistics. The SIS initiative will rely on prediction, rather than direct measurements, to develop comprehensive soil information at scale. The resulting data systems will embrace FAIR (findable, accessible, interoperable, and reproducible) access principles to support better decision-making in agriculture.

The initiative aims to facilitate multi-institutional alliances for soil health management and the application of big data analytics to real-world problems. These alliances will be instrumental for initiating broader discussions at state and national levels about the importance of robust data systems, data integration and the types of progressive access policies related to ‘agronomy at scale’ that can bring India closer to achieving the Sustainable Development Goals.

SIS is led by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with numerous partners including the International Food Policy Research Institute, ISRIC – World Soil Information, the state governments and state agriculture universities of Bihar and Andhra Pradesh, and the Andhra Pradesh Space Applications Center. The initiative began in September 2018 and will run until February 2021.

SIS functions as a co-investment in the Cereal Systems Initiative for South Asia (CSISA) and utilizes two new soil spectroscopy laboratories that were recently set up in Andhra Pradesh and Bihar under CSISA  in collaboration with the respective states’ departments of agriculture. One laboratory is now operating at the Regional Agricultural Research Station in Tirupati, Andhra Pradesh, the other at Bihar Agricultural University (Sabour) in Bhagalpur, Bihar. Spectroscopy enables precise soil analysis and can help scientists identify appropriate preventive and rehabilitative soil management interventions. The technology is also significantly faster and more cost-effective than wide-scale, wet, chemistry-based soil analysis. The SIS Initiative will also review options for incorporating digital technologies such as route planning and QR coding approaches into the programming of state partners and will assist our partners to adopt digital technologies to enhance soil sampling and analysis operational efficiencies.

Farmers will be the primary beneficiaries of this initiative, as they will receive more reliable soil health management recommendations to increase yields and profits. The initiative will also be useful to state partners, extension and agricultural development institutions, the private sector and other stakeholders who rely on high-quality soil information. Through SIS, scientists and researchers will have an opportunity to receive training in modern soil analytics, and combine mapping outputs with crop response and landscape reconnaissance data through machine-learning analytics to derive precise agronomy decisions at scale.

“The support from CIMMYT through the Gates Foundation will contribute directly to bringing down the cost of providing quality soil health data and agronomic advisory services to farmers in the long run,” said K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University. “We will also be able to generate precise digital soil maps for land use planning. The greatest advantage is to enable future applications like drones to use multi-spectral imagery and analyze rapidly large areas and discern changes in soil characteristics in a fast and reliable manner.”

Authors: Vedachalam Dakshinamurthy, CIMMYT, and Cynthia Mathys, CIMMYT

Strategic, evidence-based policy: Launching a policy experiment with the Government of Odisha

Posted on CSISA Success Story, India-news, News - Homepage, July 29, 2018

The Central Government of India has invested US$ 148.74 billion in the fiscal year 2017–18 to support agricultural development in the country. However, these investments are often unable to target the most relevant needy areas or populations due to lack of concrete evidence of their effectiveness. To support the inclusion of scientific evidence in policy-making processes, CSISA discussed with the Government of the state of Odisha the need for co-generating evidence and for its endorsement to launch a policy experiment on rice-fallow intensification and mechanization options during the 2018–19 Rabi season. The policy experiment will entail offering different combinations of incentives for service provision, irrigation facilities and for giving farmers access to credit. These experiments will be supplemented with baseline and endline surveys to gather data on the impacts of the interventions.

Rice-fallow intensification was the first priority raised by the incoming ICAR Director General, Dr. T. Mohapatra, in discussion with the CSISA leadership team in March 2016. A strategic meeting with a team of policy makers and other decision makers at the Department of Agriculture and Farmers’ Welfare, Odisha, held on 24 November 2016, identified behavioral constraints to rice-fallow intensification and mechanization as two core themes for working closely with the department and allied institutions. Since the Odisha Government invests heavily in mechanization (~US$ 50 million in 2017) in the form of direct subsidies and support to agri-service entrepreneurs, CSISA’s engagement with the Government of Odisha aims to capitalize on this opportunity by helping the State Departments of Agriculture sharpen their support programs by better targeting subsidies that do not crowd out private investments but do encourage the development of markets and machinery value chains.

Following up on discussions with the Government, CSISA conducted two behavioral evidence-generating studies in Kharif 2017. First was a participatory cognitive mapping exercise in which farmers and other stakeholders drew a map of their imagined farming systems; at the same time, CSISA sought their perspectives on ways to overcome constraints to double cropping. Second, using the key outcomes from the cognitive mapping exercise, CSISA conducted an experiment to elicit individuals’ investment preferences, as well as their commitment to community funding for key intensification parameters such as irrigation, credit, timely harvesting and marketing, and cropping systems. On the mechanization front, CSISA conducted a survey on potential mechanized services and the entrepreneurial behavior of service providers. Data from this survey were used to analyze the scope for introducing incentivization in local machine service provision.

Findings from these studies were presented to the relevant stakeholders within the Government of Odisha, including the Principal Secretary of the Department of Agriculture. CSISA now plans to design an integrated policy experiment that considers multiple leverage points that encourage farmers to consider double cropping and mechanization (investment options, institutional facilitation and incentivization in service provision) to be piloted during the coming Rabi season in Odisha. This proposed experiment is expected to determine the key factors that make farmers keep fields fallow and the policy incentives required to encourage potential entrepreneurs to become machinery service providers. The opportunity and apparent need for mechanization and cropping intensification in these expansive ecologies is clear, particularly given the diminished yield in the “breadbasket” areas of northwest India, the lack of major genetic breakthroughs that increase the yield potential of staple crops and the prevailing labor constraints.

Lessons from the experiment are expected to help identify the agricultural policy changes at the State Government level that are needed to boost crop production and intensify the cropping systems. This collaborative arrangement between the State Department of Agriculture, Odisha and CSISA is also notable because the State is a key partner in generating evidence as well as in facilitating adoption.

Authors: Prakashan Chellattan Veettil, Vartika Singh and Andrew McDonald


Copyright © 2017 CIMMYT

CSISA Website

Disclaimer

While every precaution has been taken in the preparation of this website and its contents, CIMMYT and its implementing partner organizations for CSISA – IFPRI and IRRI – assume no responsibility for errors or omissions. All information and features described herein are subject to change without notice. This website may contain links to third-party websites. CIMMYT is not responsible for the contents of any linked site or any link contained in a linked site. This website is providing these links only as a convenience, and the inclusion of a link does not imply endorsement by CIMMYT of the linked sites or their content.

Terms of Use

Copyright © 2017 International Maize and Wheat Improvement Center (CIMMYT)
CIMMYT holds the copyright to all CSISA publications and web pages but encourages use of these materials for non-commercial purposes, unless specifically stated otherwise. Permission to make digital or hard copies of part or all of this work for personal or classroom use is hereby granted without fee and without a formal request provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. For copyrights not owned by CIMMYT, express permission must be pursued with the owner of the information. To republish or redistribute for commercial purposes, prior permission is required.